Integrating Dijkstra’s algorithm into deep inverse reinforcement learning for food delivery route planning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tre.2020.102070
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
- Yang, Lin & Kwan, Mei-Po & Pan, Xiaofang & Wan, Bo & Zhou, Shunping, 2017. "Scalable space-time trajectory cube for path-finding: A study using big taxi trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 1-27.
- Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013.
"A link based network route choice model with unrestricted choice set,"
Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
- Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," MPRA Paper 48707, University Library of Munich, Germany.
- Fosgerau, Mogens & Frejinger, Emma & Karlström, Anders, 2013. "A link based network route choice model with unrestricted choice set," Working papers in Transport Economics 2013:10, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
- Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ma, Shigui & He, Yong & Gu, Ran & Yeh, Chung-Hsing, 2024. "How to cooperate in a three-tier food delivery service supply chain," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
- Liu, Shan & Jiang, Hai, 2022. "Personalized route recommendation for ride-hailing with deep inverse reinforcement learning and real-time traffic conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Meena, Purushottam & Kumar, Gopal, 2022. "Online food delivery companies' performance and consumers expectations during Covid-19: An investigation using machine learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
- Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
- Zhang, Pujun & Lei, Dazhou & Liu, Shan & Jiang, Hai, 2024. "Recursive logit-based meta-inverse reinforcement learning for driver-preferred route planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
- Yan, Yimo & Chow, Andy H.F. & Ho, Chin Pang & Kuo, Yong-Hong & Wu, Qihao & Ying, Chengshuo, 2022. "Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
- Liu, Zeyu & Li, Xueping & Khojandi, Anahita, 2022. "The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Liu, Shan & Zhang, Ya & Wang, Zhengli & Gu, Shiyi, 2023. "AdaBoost-Bagging deep inverse reinforcement learning for autonomous taxi cruising route and speed planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
- Basso, Rafael & Kulcsár, Balázs & Sanchez-Diaz, Ivan & Qu, Xiaobo, 2022. "Dynamic stochastic electric vehicle routing with safe reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
- Alcaraz, Juan J. & Losilla, Fernando & Caballero-Arnaldos, Luis, 2022. "Online model-based reinforcement learning for decision-making in long distance routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Mo, Baichuan & Wang, Qingyi & Guo, Xiaotong & Winkenbach, Matthias & Zhao, Jinhua, 2023. "Predicting drivers’ route trajectories in last-mile delivery using a pair-wise attention-based pointer neural network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
- Zhang, Fan & Lv, Huitao & Xing, Qiang & Ji, Yanjie, 2024. "Deployment of battery-swapping stations: Integrating travel chain simulation and multi-objective optimization for delivery electric micromobility vehicles," Energy, Elsevier, vol. 290(C).
- Fan, Zhang & Yanjie, Ji & Huitao, Lv & Yuqian, Zhang & Blythe, Phil & Jialiang, Fan, 2022. "Travel satisfaction of delivery electric two-wheeler riders: Evidence from Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 253-266.
- He, Xinyu & He, Fang & Li, Lishuai & Zhang, Lei & Xiao, Gang, 2022. "A route network planning method for urban air delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
- Tao, Jiawei & Dai, Hongyan & Chen, Weiwei & Jiang, Hai, 2023. "The value of personalized dispatch in O2O on-demand delivery services," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1022-1035.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Shan & Jiang, Hai, 2022. "Personalized route recommendation for ride-hailing with deep inverse reinforcement learning and real-time traffic conditions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Wong, Melvin & Farooq, Bilal & Bilodeau, Guillaume-Alexandre, 2016. "Next Direction Route Choice Model for Cyclist Using Panel Data," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319265, Transportation Research Forum.
- van Oijen, Tim P. & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "Estimation of a recursive link-based logit model and link flows in a sensor equipped network," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 262-281.
- Mai, Tien & Bui, The Viet & Nguyen, Quoc Phong & Le, Tho V., 2023. "Estimation of recursive route choice models with incomplete trip observations," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 313-331.
- Stefan Flügel & Nina Hulleberg & Aslak Fyhri & Christian Weber & Gretar Ævarsson, 2019. "Empirical speed models for cycling in the Oslo road network," Transportation, Springer, vol. 46(4), pages 1395-1419, August.
- Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
- Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
- Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
- Tien Mai & The Viet Bui & Quoc Phong Nguyen & Tho V. Le, 2022. "Estimation of Recursive Route Choice Models with Incomplete Trip Observations," Papers 2204.12992, arXiv.org.
- Meister, Adrian & Felder, Matteo & Schmid, Basil & Axhausen, Kay W., 2023. "Route choice modeling for cyclists on urban networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
- McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
- Melo, Lucas Eduardo Araújo de & Isler, Cassiano Augusto, 2023. "Integrating link count data for enhanced estimation of deterrence functions: A case study of short-term bicycle network interventions," Journal of Transport Geography, Elsevier, vol. 112(C).
- Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
- Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
- van der Waerden, Peter & van der Waerden, Jaap & Gebhard, Sarah, 2024. "Intersection based innovations and cyclists’ route choice decisions in urban areas," Transport Policy, Elsevier, vol. 146(C), pages 205-214.
- Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
- Li, Dawei & Feng, Siqi & Song, Yuchen & Lai, Xinjun & Bekhor, Shlomo, 2023. "Asymmetric closed-form route choice models: Formulations and comparative applications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
- Bhat, Chandra R. & Dubey, Subodh K. & Nagel, Kai, 2015. "Introducing non-normality of latent psychological constructs in choice modeling with an application to bicyclist route choice," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 341-363.
- Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
- Łukawska, Mirosława & Paulsen, Mads & Rasmussen, Thomas Kjær & Jensen, Anders Fjendbo & Nielsen, Otto Anker, 2023. "A joint bicycle route choice model for various cycling frequencies and trip distances based on a large crowdsourced GPS dataset," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
More about this item
Keywords
Delivery route recommendation; Inverse reinforcement learning; Route choice preference; No road network information;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:142:y:2020:i:c:s1366554520307213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.