IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223030748.html
   My bibliography  Save this article

Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles

Author

Listed:
  • Yang, Chengying
  • Wu, Zhixin
  • Li, Xuetao
  • Fars, Ashk

Abstract

This research introduces a stochastic scheduling approach that incorporates risk constraints for an energy hub (EH), considering uncertainties related to renewable generation and load demands. The proposed method utilizes the Conditional Value at Risk (CVaR) technique to assess and quantify risks. By striking a balance between reducing operational and emissions costs and increasing risk aversion, the approach presents a trade-off. The EH comprises various components such as a wind turbine (WT), photovoltaic (PV) cells, a fuel cell power plant (FCPP), a combined heat and power generation unit (CHP), and plug-in electric vehicles (PEVs). Uncertain variables encompass factors such as wind speed, solar irradiation, different demands, and market prices. To optimize profits and enhance the consumption curve, demand response programs (DRPs) for electrical, thermal, and cooling demands are implemented. To address the uncertainties associated with input random variables, the efficient k-means data clustering method is employed. A new slime mold algorithm, based on coughing and chaos theory, has been proposed to enhance the problem's solution. The algorithm incorporates innovative operators to improve its capabilities. By utilizing the coughing mechanism and chaos theory, the algorithm explores the solution space more effectively, resulting in improved outcomes for the problem at hand. The results demonstrate significant flexibility in EH management and are extensively discussed. Simulation results indicate that integrating PEVs, FCPP, and DRPs can lead to reductions of 2 %, 7 %, and 11 % in the EH's operating costs, respectively. Furthermore, considering PEVs, FCPP, and DRPs can improve the EH's risk cost by 1.98 %, 6.7 %, and 10.5 %, respectively. Based on the numerical results, in Case 4 led to a remarkable 12.65 % reduction in operational costs while simultaneously achieving a 15.43 % decrease in emission costs, showcasing the effectiveness of the proposed approach in optimizing energy management in an energy hub system.

Suggested Citation

  • Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030748
    DOI: 10.1016/j.energy.2023.129680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Habib, Salman & Aghakhani, Sina & Ghasempour Nejati, Mobin & Azimian, Mahdi & Jia, Youwei & Ahmed, Emad M., 2023. "Energy management of an intelligent parking lot equipped with hydrogen storage systems and renewable energy sources using the stochastic p-robust optimization approach," Energy, Elsevier, vol. 278(C).
    2. Fan, Linyuan & Ji, Dandan & Lin, Geng & Lin, Peng & Liu, Lixi, 2023. "Information gap-based multi-objective optimization of a virtual energy hub plant considering a developed demand response model," Energy, Elsevier, vol. 276(C).
    3. Akbari, Ehsan & Mousavi Shabestari, Seyed Farzin & Pirouzi, Sasan & Jadidoleslam, Morteza, 2023. "Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management," Renewable Energy, Elsevier, vol. 206(C), pages 295-308.
    4. Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Mansouri, Seyed Amir & Jurado, Francisco, 2023. "A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots," Energy, Elsevier, vol. 263(PD).
    5. Qun Li & Qiang Li & Chenggen Wang, 2023. "Unit Combination Scheduling Method Considering System Frequency Dynamic Constraints under High Wind Power Share," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
    6. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    7. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    8. SoltaniNejad Farsangi, Alireza & Hadayeghparast, Shahrzad & Mehdinejad, Mehdi & Shayanfar, Heidarali, 2018. "A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs," Energy, Elsevier, vol. 160(C), pages 257-274.
    9. Huang, Shoujun & Abedinia, Oveis, 2021. "Investigation in economic analysis of microgrids based on renewable energy uncertainty and demand response in the electricity market," Energy, Elsevier, vol. 225(C).
    10. Vinothini Arumugham & Hayder M. A. Ghanimi & Denis A. Pustokhin & Irina V. Pustokhina & Vidya Sagar Ponnam & Meshal Alharbi & Parkavi Krishnamoorthy & Sudhakar Sengan, 2023. "An Artificial-Intelligence-Based Renewable Energy Prediction Program for Demand-Side Management in Smart Grids," Sustainability, MDPI, vol. 15(6), pages 1-26, March.
    11. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    12. Ruiqiu Yao & Yukun Hu & Liz Varga, 2023. "Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review," Energies, MDPI, vol. 16(5), pages 1-36, March.
    13. Guo, Ying & Zhou, Wenji & Ren, Hongtao & Yu, Yadong & Xu, Lei & Fuss, Maryegli, 2023. "Optimizing the aluminum supply chain network subject to the uncertainty of carbon emissions trading market," Resources Policy, Elsevier, vol. 80(C).
    14. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    2. Giri, Binoy Krishna & Roy, Sankar Kumar, 2024. "Fuzzy-random robust flexible programming on sustainable closed-loop renewable energy supply chain," Applied Energy, Elsevier, vol. 363(C).
    3. Zheng, Yangbing & Xue, Xiao & Xi, Sun & Xin, Wang, 2024. "Balancing Possibilist-probabilistic risk assessment for smart energy hubs: Enabling secure peer-to-peer energy sharing with CCUS technology and cyber-security," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    2. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    3. Innocent Kamwa & Leila Bagherzadeh & Atieh Delavari, 2023. "Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions," Energies, MDPI, vol. 16(11), pages 1-21, May.
    4. Kalim Ullah & Quanyuan Jiang & Guangchao Geng & Rehan Ali Khan & Sheraz Aslam & Wahab Khan, 2022. "Optimization of Demand Response and Power-Sharing in Microgrids for Cost and Power Losses," Energies, MDPI, vol. 15(9), pages 1-22, April.
    5. Yu, Jie & Chen, Lu & Wang, Qiong & Zhang, Xi & Sun, Qinghe, 2024. "Towards sustainable regional energy solutions: An optimized operational model for integrated energy systems with price-responsive planning," Energy, Elsevier, vol. 305(C).
    6. Aslani, Mehrdad & Mashayekhi, Mehdi & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2022. "Robust optimal operation of energy hub incorporating integrated thermal and electrical demand response programs under various electric vehicle charging modes," Applied Energy, Elsevier, vol. 321(C).
    7. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Mosè Rossi & Lingkang Jin & Andrea Monforti Ferrario & Marialaura Di Somma & Amedeo Buonanno & Christina Papadimitriou & Andrei Morch & Giorgio Graditi & Gabriele Comodi, 2024. "Energy Hub and Micro-Energy Hub Architecture in Integrated Local Energy Communities: Enabling Technologies and Energy Planning Tools," Energies, MDPI, vol. 17(19), pages 1-50, September.
    9. Dorahaki, Sobhan & Rashidinejad, Masoud & Fatemi Ardestani, Seyed Farshad & Abdollahi, Amir & Salehizadeh, Mohammad Reza, 2023. "An integrated model for citizen energy communities and renewable energy communities based on clean energy package: A two-stage risk-based approach," Energy, Elsevier, vol. 277(C).
    10. Guo, Tianyu & Guo, Qi & Huang, Libin & Guo, Haiping & Lu, Yuanhong & Tu, Liang, 2023. "Microgrid source-network-load-storage master-slave game optimization method considering the energy storage overcharge/overdischarge risk," Energy, Elsevier, vol. 282(C).
    11. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    12. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    13. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    14. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    15. Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).
    16. Habib, Salman & Aghakhani, Sina & Ghasempour Nejati, Mobin & Azimian, Mahdi & Jia, Youwei & Ahmed, Emad M., 2023. "Energy management of an intelligent parking lot equipped with hydrogen storage systems and renewable energy sources using the stochastic p-robust optimization approach," Energy, Elsevier, vol. 278(C).
    17. Kaiyan Wang & Xueyan Wang & Rong Jia & Jian Dang & Yan Liang & Haodong Du, 2022. "Research on Coupled Cooperative Operation of Medium- and Long-Term and Spot Electricity Transaction for Multi-Energy System: A Case Study in China," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    18. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    19. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    20. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.