Author
Listed:
- Farahani, Masoud Kishani
- Yazdi, Mohammad Hossein
- Talaei, Mohammad
- Ghahnavieh, Abbas Rajabi
Abstract
Supermarkets are significant consumers of energy, primarily due to refrigeration systems, which also contribute to global climate change through hydrofluorocarbon refrigerants. The transition to CO2 refrigeration systems (CO2-RS) offers a low-environmental-impact alternative; however, malfunctions can undermine these benefits. To prevent CO2-RS from malfunctioning, fault detection and diagnostics (FDD) are commonly employed. This study presents an innovative approach to developing an efficient data-driven FDD model for CO2-RS, emphasizing cost-effective sensor utilization and model interpretability. This new method is essential due to the limitations of existing FDD techniques, which often lack cost-effective sensor solutions and model interpretability, thereby hindering their practical application and effectiveness in identifying and diagnosing faults in CO2-RS. The approach focuses on diagnosing common faults in CO2-RS by developing virtual sensors, employing tree-based machine learning algorithms (Random Forest, XGBoost, CatBoost, LightGBM), selecting an optimal sensor set, and using SHapley Additive exPlanations (SHAP) for interpretability. The integration of three developed virtual sensors with pre-installed physical sensors, derived from physical relationships and existing sensors, enhances access to cost-effective sensors and improves the performance of data-driven FDD models. These virtual sensors, as well as the physical sensors needed to develop them, are selected as the optimal sensor set. Additionally, the data-driven FDD model, utilizing the random forest (RF) algorithm and the optimal sensor set, is introduced as an efficient model capable of classifying faults in CO2-RS, achieving an accuracy of 99.48 %, with precision and recall of 99.57 %, and an F1-score of 99.42 %. The SHAP technique is employed to enhance model interpretability, ensuring practical deployment in supermarket settings.
Suggested Citation
Farahani, Masoud Kishani & Yazdi, Mohammad Hossein & Talaei, Mohammad & Ghahnavieh, Abbas Rajabi, 2025.
"Enhancing energy efficiency in supermarkets: A data-driven approach for fault detection and diagnosis in CO2 refrigeration systems,"
Applied Energy, Elsevier, vol. 377(PB).
Handle:
RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018622
DOI: 10.1016/j.apenergy.2024.124479
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018622. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.