IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018622.html
   My bibliography  Save this article

Enhancing energy efficiency in supermarkets: A data-driven approach for fault detection and diagnosis in CO2 refrigeration systems

Author

Listed:
  • Farahani, Masoud Kishani
  • Yazdi, Mohammad Hossein
  • Talaei, Mohammad
  • Ghahnavieh, Abbas Rajabi

Abstract

Supermarkets are significant consumers of energy, primarily due to refrigeration systems, which also contribute to global climate change through hydrofluorocarbon refrigerants. The transition to CO2 refrigeration systems (CO2-RS) offers a low-environmental-impact alternative; however, malfunctions can undermine these benefits. To prevent CO2-RS from malfunctioning, fault detection and diagnostics (FDD) are commonly employed. This study presents an innovative approach to developing an efficient data-driven FDD model for CO2-RS, emphasizing cost-effective sensor utilization and model interpretability. This new method is essential due to the limitations of existing FDD techniques, which often lack cost-effective sensor solutions and model interpretability, thereby hindering their practical application and effectiveness in identifying and diagnosing faults in CO2-RS. The approach focuses on diagnosing common faults in CO2-RS by developing virtual sensors, employing tree-based machine learning algorithms (Random Forest, XGBoost, CatBoost, LightGBM), selecting an optimal sensor set, and using SHapley Additive exPlanations (SHAP) for interpretability. The integration of three developed virtual sensors with pre-installed physical sensors, derived from physical relationships and existing sensors, enhances access to cost-effective sensors and improves the performance of data-driven FDD models. These virtual sensors, as well as the physical sensors needed to develop them, are selected as the optimal sensor set. Additionally, the data-driven FDD model, utilizing the random forest (RF) algorithm and the optimal sensor set, is introduced as an efficient model capable of classifying faults in CO2-RS, achieving an accuracy of 99.48 %, with precision and recall of 99.57 %, and an F1-score of 99.42 %. The SHAP technique is employed to enhance model interpretability, ensuring practical deployment in supermarket settings.

Suggested Citation

  • Farahani, Masoud Kishani & Yazdi, Mohammad Hossein & Talaei, Mohammad & Ghahnavieh, Abbas Rajabi, 2025. "Enhancing energy efficiency in supermarkets: A data-driven approach for fault detection and diagnosis in CO2 refrigeration systems," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018622
    DOI: 10.1016/j.apenergy.2024.124479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Y.T. & Tassou, S.A. & Suamir, I.N., 2013. "Prediction and analysis of the seasonal performance of tri-generation and CO2 refrigeration systems in supermarkets," Applied Energy, Elsevier, vol. 112(C), pages 898-906.
    2. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
    3. Movahed, Paria & Taheri, Saman & Razban, Ali, 2023. "A bi-level data-driven framework for fault-detection and diagnosis of HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    4. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).
    5. Luca Gugliermetti & Fabrizio Cumo & Sofia Agostinelli, 2024. "A Future Direction of Machine Learning for Building Energy Management: Interpretable Models," Energies, MDPI, vol. 17(3), pages 1-27, February.
    6. Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.
    7. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method," Applied Energy, Elsevier, vol. 348(C).
    2. Sun, Chunhua & Zhang, Haixiang & Cao, Shanshan & Xia, Guoqiang & Zhong, Jian & Wu, Xiangdong, 2023. "A hierarchical classifying and two-step training strategy for detection and diagnosis of anormal temperature in district heating system," Applied Energy, Elsevier, vol. 349(C).
    3. Ren, Haoshan & Xu, Chengliang & Lyu, Yuanli & Ma, Zhenjun & Sun, Yongjun, 2023. "A thermodynamic-law-integrated deep learning method for high-dimensional sensor fault detection in diverse complex HVAC systems," Applied Energy, Elsevier, vol. 351(C).
    4. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    5. Ssembatya, Martin & Claridge, David E., 2024. "Quantitative fault detection and diagnosis methods for vapour compression chillers: Exploring the potential for field-implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    6. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    7. Melendez, Kevin A. & Matamala, Yolanda, 2025. "Adversarial attacks in demand-side electricity markets," Applied Energy, Elsevier, vol. 377(PD).
    8. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Antonio Rosato & Francesco Guarino & Mohammad El Youssef & Alfonso Capozzoli & Massimiliano Masullo & Luigi Maffei, 2022. "Faulty Operation of Coils’ and Humidifier Valves in a Typical Air-Handling Unit: Experimental Impact Assessment of Indoor Comfort and Patterns of Operating Parameters under Mediterranean Climatic Cond," Energies, MDPI, vol. 15(18), pages 1-38, September.
    10. Chen, Yu-Zhi & Tsoutsanis, Elias & Xiang, Heng-Chao & Li, Yi-Guang & Zhao, Jun-Jie, 2022. "A dynamic performance diagnostic method applied to hydrogen powered aero engines operating under transient conditions," Applied Energy, Elsevier, vol. 317(C).
    11. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    12. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    13. Hong, Yejin & Yoon, Sungmin & Kim, Yong-Shik & Jang, Hyangin, 2021. "System-level virtual sensing method in building energy systems using autoencoder: Under the limited sensors and operational datasets," Applied Energy, Elsevier, vol. 301(C).
    14. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).
    15. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    16. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    17. Liang, Xinbin & Zhu, Xu & Chen, Kang & Chen, Siliang & Jin, Xinqiao & Du, Zhimin, 2023. "Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems," Energy, Elsevier, vol. 263(PC).
    18. Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
    19. Wang, Yao & Wang, Qianlong & Yu, Jianlin & Qian, Suxin, 2023. "A heat pump dual temperature display cabinet using natural refrigerants," Applied Energy, Elsevier, vol. 330(PB).
    20. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.