IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i3p700-d1331145.html
   My bibliography  Save this article

A Future Direction of Machine Learning for Building Energy Management: Interpretable Models

Author

Listed:
  • Luca Gugliermetti

    (Department of Project and Design, University of Rome La Sapienza, 00185 Rome, Italy)

  • Fabrizio Cumo

    (Department of Planning, Design, Technology of Architecture, University of Rome La Sapienza, 00185 Rome, Italy)

  • Sofia Agostinelli

    (Department of Astronautical, Electrical and Energy Engineering, University of Rome La Sapienza, 00185 Rome, Italy)

Abstract

Machine learning (ML) algorithms are now part of everyday life, as many technological devices use these algorithms. The spectrum of uses is wide, but it is evident that ML represents a revolution that may change almost every human activity. However, as for all innovations, it comes with challenges. One of the most critical of these challenges is providing users with an understanding of how models’ output is related to input data. This is called “interpretability”, and it is focused on explaining what feature influences a model’s output. Some algorithms have a simple and easy-to-understand relationship between input and output, while other models are “black boxes” that return an output without giving the user information as to what influenced it. The lack of this knowledge creates a truthfulness issue when the output is inspected by a human, especially when the operator is not a data scientist. The Building and Construction sector is starting to face this innovation, and its scientific community is working to define best practices and models. This work is intended for developing a deep analysis to determine how interpretable ML models could be among the most promising future technologies for the energy management in built environments.

Suggested Citation

  • Luca Gugliermetti & Fabrizio Cumo & Sofia Agostinelli, 2024. "A Future Direction of Machine Learning for Building Energy Management: Interpretable Models," Energies, MDPI, vol. 17(3), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:700-:d:1331145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/3/700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/3/700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arjunan, Pandarasamy & Poolla, Kameshwar & Miller, Clayton, 2020. "EnergyStar++: Towards more accurate and explanatory building energy benchmarking," Applied Energy, Elsevier, vol. 276(C).
    2. Smarra, Francesco & Jain, Achin & de Rubeis, Tullio & Ambrosini, Dario & D’Innocenzo, Alessandro & Mangharam, Rahul, 2018. "Data-driven model predictive control using random forests for building energy optimization and climate control," Applied Energy, Elsevier, vol. 226(C), pages 1252-1272.
    3. Kim, Yang-Seon & Heidarinejad, Mohammad & Dahlhausen, Matthew & Srebric, Jelena, 2017. "Building energy model calibration with schedules derived from electricity use data," Applied Energy, Elsevier, vol. 190(C), pages 997-1007.
    4. Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
    5. Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
    6. Zhang, Rongpeng & Hong, Tianzhen, 2017. "Modeling of HVAC operational faults in building performance simulation," Applied Energy, Elsevier, vol. 202(C), pages 178-188.
    7. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    8. Li, Ao & Xiao, Fu & Zhang, Chong & Fan, Cheng, 2021. "Attention-based interpretable neural network for building cooling load prediction," Applied Energy, Elsevier, vol. 299(C).
    9. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    10. Golizadeh Akhlaghi, Yousef & Aslansefat, Koorosh & Zhao, Xudong & Sadati, Saba & Badiei, Ali & Xiao, Xin & Shittu, Samson & Fan, Yi & Ma, Xiaoli, 2021. "Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050," Applied Energy, Elsevier, vol. 281(C).
    11. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    12. Sha, Huajing & Xu, Peng & Lin, Meishun & Peng, Chen & Dou, Qiang, 2021. "Development of a multi-granularity energy forecasting toolkit for demand response baseline calculation," Applied Energy, Elsevier, vol. 289(C).
    13. Joohyun Jang & Woonyoung Jeong & Sangmin Kim & Byeongcheon Lee & Miyoung Lee & Jihoon Moon, 2023. "RAID: Robust and Interpretable Daily Peak Load Forecasting via Multiple Deep Neural Networks and Shapley Values," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    14. Jonas Hülsmann & Julia Barbosa & Florian Steinke, 2023. "Local Interpretable Explanations of Energy System Designs," Energies, MDPI, vol. 16(5), pages 1-17, February.
    15. Tang, Wenjun & Wang, Hao & Lee, Xian-Long & Yang, Hong-Tzer, 2022. "Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data," Energy, Elsevier, vol. 240(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yanhua & Wang, Ningbo & Shao, Shuangquan & Huang, Congqi & Zhang, Zhentao & Li, Xiaoqiong & Wang, Youdong, 2024. "A review on hybrid physics and data-driven modeling methods applied in air source heat pump systems for energy efficiency improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    2. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    3. Chakraborty, Debaditya & Alam, Arafat & Chaudhuri, Saptarshi & Başağaoğlu, Hakan & Sulbaran, Tulio & Langar, Sandeep, 2021. "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, Elsevier, vol. 291(C).
    4. Xiao, Tianqi & You, Fengqi, 2024. "Physically consistent deep learning-based day-ahead energy dispatching and thermal comfort control for grid-interactive communities," Applied Energy, Elsevier, vol. 353(PB).
    5. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
    6. Salah Vaisi & Saleh Mohammadi & Benedetto Nastasi & Kavan Javanroodi, 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings," Energies, MDPI, vol. 13(24), pages 1-18, December.
    7. Massimiliano Manfren & Karla M. Gonzalez-Carreon & Patrick A. B. James, 2024. "Interpretable Data-Driven Methods for Building Energy Modelling—A Review of Critical Connections and Gaps," Energies, MDPI, vol. 17(4), pages 1-22, February.
    8. Li, Tian & Bie, Haipei & Lu, Yi & Sawyer, Azadeh Omidfar & Loftness, Vivian, 2024. "MEBA: AI-powered precise building monthly energy benchmarking approach," Applied Energy, Elsevier, vol. 359(C).
    9. Xu, Wenjie & Svetozarevic, Bratislav & Di Natale, Loris & Heer, Philipp & Jones, Colin N., 2024. "Data-driven adaptive building thermal controller tuning with constraints: A primal–dual contextual Bayesian optimization approach," Applied Energy, Elsevier, vol. 358(C).
    10. Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
    11. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    12. Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2022. "Assessment of HVAC system operational fault impacts and multiple faults interactions under climate change," Energy, Elsevier, vol. 258(C).
    13. Wang, Xinlin & Wang, Hao & Li, Shengping & Jin, Haizhen, 2024. "A reinforcement learning-based online learning strategy for real-time short-term load forecasting," Energy, Elsevier, vol. 305(C).
    14. Hyo-Jun Kim & Young-Hum Cho, 2021. "Optimal Control Method of Variable Air Volume Terminal Unit System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    15. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-40, December.
    16. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    17. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    18. Sami Kabir & Mohammad Shahadat Hossain & Karl Andersson, 2024. "An Advanced Explainable Belief Rule-Based Framework to Predict the Energy Consumption of Buildings," Energies, MDPI, vol. 17(8), pages 1-18, April.
    19. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:700-:d:1331145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.