Advance and prospect of machine learning based fault detection and diagnosis in air conditioning systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2024.114853
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eom, Yong Hwan & Yoo, Jin Woo & Hong, Sung Bin & Kim, Min Soo, 2019. "Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving," Energy, Elsevier, vol. 187(C).
- Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
- Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.
- William Nelson & Charles Culp, 2022. "Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
- Icksung Kim & Woohyun Kim, 2021. "Development and Validation of a Data-Driven Fault Detection and Diagnosis System for Chillers Using Machine Learning Algorithms," Energies, MDPI, vol. 14(7), pages 1-24, April.
- Du, Zhimin & Liang, Xinbin & Chen, Siliang & Li, Pengcheng & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Domain adaptation deep learning and its T-S diagnosis networks for the cross-control and cross-condition scenarios in data center HVAC systems," Energy, Elsevier, vol. 280(C).
- Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
- Liu, Jiangyan & Wang, Jiangyu & Li, Guannan & Chen, Huanxin & Shen, Limei & Xing, Lu, 2017. "Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques," Applied Energy, Elsevier, vol. 208(C), pages 522-539.
- Wang, Shengwei & Cui, Jingtan, 2005. "Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method," Applied Energy, Elsevier, vol. 82(3), pages 197-213, November.
- Lee, Won-Yong & House, John M. & Kyong, Nam-Ho, 2004. "Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks," Applied Energy, Elsevier, vol. 77(2), pages 153-170, February.
- Movahed, Paria & Taheri, Saman & Razban, Ali, 2023. "A bi-level data-driven framework for fault-detection and diagnosis of HVAC systems," Applied Energy, Elsevier, vol. 339(C).
- Kusiak, Andrew & Li, Mingyang & Zheng, Haiyang, 2010. "Virtual models of indoor-air-quality sensors," Applied Energy, Elsevier, vol. 87(6), pages 2087-2094, June.
- Fan, Cheng & Lei, Yutian & Sun, Yongjun & Mo, Like, 2023. "Novel transformer-based self-supervised learning methods for improved HVAC fault diagnosis performance with limited labeled data," Energy, Elsevier, vol. 278(PB).
- Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
- Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Najafi, Massieh & Auslander, David M. & Bartlett, Peter L. & Haves, Philip & Sohn, Michael D., 2012. "Application of machine learning in the fault diagnostics of air handling units," Applied Energy, Elsevier, vol. 96(C), pages 347-358.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.
- Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
- Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
- Ren, Haoshan & Xu, Chengliang & Lyu, Yuanli & Ma, Zhenjun & Sun, Yongjun, 2023. "A thermodynamic-law-integrated deep learning method for high-dimensional sensor fault detection in diverse complex HVAC systems," Applied Energy, Elsevier, vol. 351(C).
- Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
- Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.
- Zhong, Fangliang & Calautit, John Kaiser & Wu, Yupeng, 2023. "Fault data seasonal imbalance and insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations," Energy, Elsevier, vol. 282(C).
- Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
- Zhang, Rongpeng & Hong, Tianzhen, 2017. "Modeling of HVAC operational faults in building performance simulation," Applied Energy, Elsevier, vol. 202(C), pages 178-188.
- Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
- William Nelson & Charles Culp, 2022. "Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
- Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
- Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
- Guo, Yabin & Li, Yuduo & Li, Weilin, 2023. "On-site fault experiment and diagnosis research of the carbon dioxide transcritical heat pump system for energy saving," Energy, Elsevier, vol. 274(C).
- Fan, Cheng & Wu, Qiuting & Zhao, Yang & Mo, Like, 2024. "Integrating active learning and semi-supervised learning for improved data-driven HVAC fault diagnosis performance," Applied Energy, Elsevier, vol. 356(C).
- Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
- Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
- Najafi, Massieh & Auslander, David M. & Bartlett, Peter L. & Haves, Philip & Sohn, Michael D., 2012. "Application of machine learning in the fault diagnostics of air handling units," Applied Energy, Elsevier, vol. 96(C), pages 347-358.
- Lei, Lei & Wu, Bing & Fang, Xin & Chen, Li & Wu, Hao & Liu, Wei, 2023. "A dynamic anomaly detection method of building energy consumption based on data mining technology," Energy, Elsevier, vol. 263(PA).
More about this item
Keywords
Fault detection and diagnosis; Machine learning; Optimization methods; Evaluation parameters; HVAC system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124005793. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.