IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v12y2017i2p171-180..html
   My bibliography  Save this article

Efficiency increase in carbon dioxide refrigeration technology with parallel compression

Author

Listed:
  • H. Fritschi
  • F. Tillenkamp
  • R. Löhrer
  • M. Brügger

Abstract

In this article, we will review the comparison between a CO2 refrigeration system with a parallel compressor and a conventional carbon dioxide refrigeration machine. In order to carry out the comparison, a numerical model has been generated showing a good correlation to experimental data obtained with a fully instrumented test rig machine. We can determine under which conditions an increase in the energy efficiency ratio (EER) of 10% and more can be expected with a parallel compression system. The results will help users to decide upon economically viable refrigeration systems, depending on the operational conditions of the machine. In usual operating conditions, the achievable increase in the EER by the parallel compressor has been determined; furthermore, it showed that a low evaporation temperature and a high temperature at the outlet of the gas cooler have a positive effect on the parallel compression circuit. With respect to the intermediate pressure, an optimum can be specified at low evaporation temperatures.

Suggested Citation

  • H. Fritschi & F. Tillenkamp & R. Löhrer & M. Brügger, 2017. "Efficiency increase in carbon dioxide refrigeration technology with parallel compression," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 171-180.
  • Handle: RePEc:oup:ijlctc:v:12:y:2017:i:2:p:171-180.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctw002
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Y.T. & Tassou, S.A. & Suamir, I.N., 2013. "Prediction and analysis of the seasonal performance of tri-generation and CO2 refrigeration systems in supermarkets," Applied Energy, Elsevier, vol. 112(C), pages 898-906.
    2. I. Colombo & G. G. Maidment & I. Chaer & J. M. Missenden, 2014. "Carbon dioxide refrigeration with heat recovery for supermarkets," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(1), pages 38-44.
    3. A. Campbell & G. G. Maidment & J. F. Missenden, 2007. "A refrigeration system for supermarkets using natural refrigerant CO 2," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 2(1), pages 65-79, January.
    4. Alberto Cavallini & Claudio Zilio, 2007. "Carbon dioxide as a natural refrigerant," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 2(3), pages 225-249, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Bruno & Martin Belusko & Edward Halawa, 2019. "CO 2 Refrigeration and Heat Pump Systems—A Comprehensive Review," Energies, MDPI, vol. 12(15), pages 1-39, August.
    2. Gullo, Paride & Elmegaard, Brian & Cortella, Giovanni, 2016. "Advanced exergy analysis of a R744 booster refrigeration system with parallel compression," Energy, Elsevier, vol. 107(C), pages 562-571.
    3. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    5. Lykas, Panagiotis & Georgousis, Nikolaos & Bellos, Evangelos & Tzivanidis, Christos, 2022. "Investigation and optimization of a CO2-based polygeneration unit for supermarkets," Applied Energy, Elsevier, vol. 311(C).
    6. Gullo, Paride & Tsamos, Konstantinos M. & Hafner, Armin & Banasiak, Krzysztof & Ge, Yunting T. & Tassou, Savvas A., 2018. "Crossing CO2 equator with the aid of multi-ejector concept: A comprehensive energy and environmental comparative study," Energy, Elsevier, vol. 164(C), pages 236-263.
    7. Gequn Shu & Chen Hu & Hua Tian & Xiaoya Li & Zhigang Yu & Mingtao Wang, 2019. "Analysis and Optimization of Coupled Thermal Management Systems Used in Vehicles," Energies, MDPI, vol. 12(7), pages 1-17, April.
    8. Paride Gullo & Armin Hafner & Krzysztof Banasiak & Silvia Minetto & Ekaterini E. Kriezi, 2019. "Multi-Ejector Concept: A Comprehensive Review on its Latest Technological Developments," Energies, MDPI, vol. 12(3), pages 1-29, January.
    9. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    10. Martin Belusko & Raymond Liddle & Alemu Alemu & Edward Halawa & Frank Bruno, 2019. "Performance Evaluation of a CO 2 Refrigeration System Enhanced with a Dew Point Cooler," Energies, MDPI, vol. 12(6), pages 1-22, March.
    11. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    12. Jesús Catalán-Gil & Daniel Sánchez & Rodrigo Llopis & Laura Nebot-Andrés & Ramón Cabello, 2018. "Energy Evaluation of Multiple Stage Commercial Refrigeration Architectures Adapted to F-Gas Regulation," Energies, MDPI, vol. 11(7), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:12:y:2017:i:2:p:171-180.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.