IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v188y2017icp200-214.html
   My bibliography  Save this article

Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information

Author

Listed:
  • Wang, Zhanwei
  • Wang, Zhiwei
  • He, Suowei
  • Gu, Xiaowei
  • Yan, Zeng Feng

Abstract

Applying the fault detection and diagnosis (FDD) techniques to chillers is beneficial to reduce building energy consumption and to enhance the energy efficiency of buildings. The purpose of this study is to propose a chiller FDD method with better performance for field implementation. The technological paths are as follows: (i) in order to identify new types of faults and to update the FDD fault libraries, a distance rejection (DR) technique is merged into the Bayesian network (BN) by transforming the chiller FDD problem into a single-class classification problem. Furthermore, the DR can be tuned to obtain an adjustable false alarm rate (FAR); (ii) to increase the diagnostic accuracies of known (or existing) faults and the identification accuracies of new types of faults, multi-source non-sensor information (MI) is merged into the BN, i.e., maintenance records and repair service history, healthy states of related equipment and on-site observed information. A novel chiller FDD method based on BN merged DR and MI (DR-MI-BN) is proposed in this study. The performance of this proposed method is evaluated by using the experimental data from ASHRAE RP-1043. Test results show that the FAR can be tuned for different users’ requirements, and that merging the MI significantly improves the diagnostic accuracies of known faults from 77.2% to 99.8% at most (for refrigerant leakage) and the identification accuracies of new types of faults from 56.6% to 99.6% at most (for NF7).

Suggested Citation

  • Wang, Zhanwei & Wang, Zhiwei & He, Suowei & Gu, Xiaowei & Yan, Zeng Feng, 2017. "Fault detection and diagnosis of chillers using Bayesian network merged distance rejection and multi-source non-sensor information," Applied Energy, Elsevier, vol. 188(C), pages 200-214.
  • Handle: RePEc:eee:appene:v:188:y:2017:i:c:p:200-214
    DOI: 10.1016/j.apenergy.2016.11.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silke Friedrich, 2013. "Energy Efficiency in Buildings in EU Countries," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(2), pages 57-59, 07.
    2. Cheng, Qi & Wang, Shengwei & Yan, Chengchu & Xiao, Fu, 2017. "Probabilistic approach for uncertainty-based optimal design of chiller plants in buildings," Applied Energy, Elsevier, vol. 185(P2), pages 1613-1624.
    3. Zhao, Yang & Wang, Shengwei & Xiao, Fu, 2013. "Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)," Applied Energy, Elsevier, vol. 112(C), pages 1041-1048.
    4. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    5. Wang, Shengwei & Cui, Jingtan, 2005. "Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method," Applied Energy, Elsevier, vol. 82(3), pages 197-213, November.
    6. Silke Friedrich, 2013. "Energy Efficiency in Buildings in EU Countries," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 11(02), pages 57-59, July.
    7. repec:ces:ifodic:v:11:y:2013:i:2:p:19094737 is not listed on IDEAS
    8. Lee, Won-Yong & House, John M. & Kyong, Nam-Ho, 2004. "Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks," Applied Energy, Elsevier, vol. 77(2), pages 153-170, February.
    9. Gadd, Henrik & Werner, Sven, 2015. "Fault detection in district heating substations," Applied Energy, Elsevier, vol. 157(C), pages 51-59.
    10. Du, Zhimin & Jin, Xinqiao & Yang, Yunyu, 2009. "Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network," Applied Energy, Elsevier, vol. 86(9), pages 1624-1631, September.
    11. Bonvini, Marco & Sohn, Michael D. & Granderson, Jessica & Wetter, Michael & Piette, Mary Ann, 2014. "Robust on-line fault detection diagnosis for HVAC components based on nonlinear state estimation techniques," Applied Energy, Elsevier, vol. 124(C), pages 156-166.
    12. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    13. Saidur, R. & Hasanuzzaman, M. & Mahlia, T.M.I. & Rahim, N.A. & Mohammed, H.A., 2011. "Chillers energy consumption, energy savings and emission analysis in an institutional buildings," Energy, Elsevier, vol. 36(8), pages 5233-5238.
    14. Gao, Dian-ce & Wang, Shengwei & Shan, Kui & Yan, Chengchu, 2016. "A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems," Applied Energy, Elsevier, vol. 164(C), pages 1028-1038.
    15. Najafi, Massieh & Auslander, David M. & Bartlett, Peter L. & Haves, Philip & Sohn, Michael D., 2012. "Application of machine learning in the fault diagnostics of air handling units," Applied Energy, Elsevier, vol. 96(C), pages 347-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yimin & Wen, Jin & Pradhan, Ojas & Lo, L. James & Wu, Teresa, 2022. "Using discrete Bayesian networks for diagnosing and isolating cross-level faults in HVAC systems," Applied Energy, Elsevier, vol. 327(C).
    2. Du, Zhimin & Liang, Xinbin & Chen, Siliang & Zhu, Xu & Chen, Kang & Jin, Xinqiao, 2023. "Knowledge-infused deep learning diagnosis model with self-assessment for smart management in HVAC systems," Energy, Elsevier, vol. 263(PD).
    3. Sun, Chunhua & Zhang, Haixiang & Cao, Shanshan & Xia, Guoqiang & Zhong, Jian & Wu, Xiangdong, 2023. "A hierarchical classifying and two-step training strategy for detection and diagnosis of anormal temperature in district heating system," Applied Energy, Elsevier, vol. 349(C).
    4. Liang, Xinbin & Zhu, Xu & Chen, Kang & Chen, Siliang & Jin, Xinqiao & Du, Zhimin, 2023. "Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems," Energy, Elsevier, vol. 263(PC).
    5. Chen, Bin & Xie, Lei & Li, Yongzhan & Gao, Baocheng, 2020. "Acoustical damage detection of wind turbine yaw system using Bayesian network," Renewable Energy, Elsevier, vol. 160(C), pages 1364-1372.
    6. Ssembatya, Martin & Claridge, David E., 2024. "Quantitative fault detection and diagnosis methods for vapour compression chillers: Exploring the potential for field-implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    7. Liu, Wenli & Liu, Fenghua & Fang, Weili & Love, Peter E.D., 2024. "Causal discovery and reasoning for geotechnical risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
    9. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    11. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Yoon, Sungmin & Yu, Yuebin, 2018. "Hidden factors and handling strategies on virtual in-situ sensor calibration in building energy systems: Prior information and cancellation effect," Applied Energy, Elsevier, vol. 212(C), pages 1069-1082.
    13. Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
    14. Oh, ChoHwan & Lee, Jeong Ik, 2020. "Real time nuclear power plant operating state cognitive algorithm development using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    15. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
    2. Chen, Jianli & Zhang, Liang & Li, Yanfei & Shi, Yifu & Gao, Xinghua & Hu, Yuqing, 2022. "A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Simon P. Melgaard & Kamilla H. Andersen & Anna Marszal-Pomianowska & Rasmus L. Jensen & Per K. Heiselberg, 2022. "Fault Detection and Diagnosis Encyclopedia for Building Systems: A Systematic Review," Energies, MDPI, vol. 15(12), pages 1-50, June.
    4. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    5. Zhang, Rongpeng & Hong, Tianzhen, 2017. "Modeling of HVAC operational faults in building performance simulation," Applied Energy, Elsevier, vol. 202(C), pages 178-188.
    6. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    7. Li, Tingting & Zhou, Yangze & Zhao, Yang & Zhang, Chaobo & Zhang, Xuejun, 2022. "A hierarchical object oriented Bayesian network-based fault diagnosis method for building energy systems," Applied Energy, Elsevier, vol. 306(PB).
    8. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    9. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    10. Ren, Haoshan & Xu, Chengliang & Lyu, Yuanli & Ma, Zhenjun & Sun, Yongjun, 2023. "A thermodynamic-law-integrated deep learning method for high-dimensional sensor fault detection in diverse complex HVAC systems," Applied Energy, Elsevier, vol. 351(C).
    11. Du, Zhimin & Chen, Ling & Jin, Xinqiao, 2017. "Data-driven based reliability evaluation for measurements of sensors in a vapor compression system," Energy, Elsevier, vol. 122(C), pages 237-248.
    12. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    13. Kowalski, Jerzy, 2015. "Concept of the multidimensional diagnostic tool based on exhaust gas composition for marine engines," Applied Energy, Elsevier, vol. 150(C), pages 1-8.
    14. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    15. William Nelson & Charles Culp, 2022. "Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    16. Thierno M. L. Diallo & Sébastien Henry & Yacine Ouzrout & Abdelaziz Bouras, 2018. "Data-Based Fault Diagnosis Model Using a Bayesian Causal Analysis Framework," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 583-620, March.
    17. Li, Bingxu & Cheng, Fanyong & Zhang, Xin & Cui, Can & Cai, Wenjian, 2021. "A novel semi-supervised data-driven method for chiller fault diagnosis with unlabeled data," Applied Energy, Elsevier, vol. 285(C).
    18. Feser, Daniel & Runst, Petrik, 2015. "Energy efficiency consultants as change agents? Examining the reasons for EECs’ limited success," ifh Working Papers 1 (2015), Volkswirtschaftliches Institut für Mittelstand und Handwerk an der Universität Göttingen (ifh).
    19. Feser, Daniel & Runst, Petrik, 2016. "Energy efficiency consultants as change agents? Examining the reasons for EECs’ limited success," Energy Policy, Elsevier, vol. 98(C), pages 309-317.
    20. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:200-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.