IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5923-d1529596.html
   My bibliography  Save this article

Integrating Cold Thermal Energy Storage for Air Conditioning Demand in a CO 2 Refrigeration System at a Supermarket

Author

Listed:
  • Davide Tommasini

    (Department of Thermal Energy, SINTEF Energy Research, 7034 Trondheim, Norway)

  • Håkon Selvnes

    (Cartesian AS, 7031 Trondheim, Norway)

  • Armin Hafner

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway)

Abstract

A common configuration for transcritical CO 2 booster systems in supermarkets involves air conditioning (AC) supplied by cooling a water-glycol circuit. The design capacity of the refrigeration unit must handle all refrigeration loads and the AC load during the hottest summer day, leading to overcapacity and part-load operation for most of the year. A proposed design for implementing cold thermal energy storage (CTES) dedicated to AC demand in a supermarket located in the Oslo region is modeled in the object-oriented language Modelica. Simulation results demonstrate an electricity peak power reduction of up to 32.33%. Even though energy savings are not the primary objective of this project, they are achieved by producing and storing energy when the outdoor temperature is lower, and the coefficient of performance (COP) of the system is higher. The energy savings can reach up to 11.8%. Finally, the economic benefits of the system are assessed under the spot pricing system, revealing potential electricity cost savings of up to 12.56%.

Suggested Citation

  • Davide Tommasini & Håkon Selvnes & Armin Hafner, 2024. "Integrating Cold Thermal Energy Storage for Air Conditioning Demand in a CO 2 Refrigeration System at a Supermarket," Energies, MDPI, vol. 17(23), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5923-:d:1529596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).
    2. Sven Gruber & Klemen Rola & Danijela Urbancl & Darko Goričanec, 2024. "Recent Advances in Ejector-Enhanced Vapor Compression Heat Pump and Refrigeration Systems—A Review," Energies, MDPI, vol. 17(16), pages 1-50, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    2. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    3. Guo, Jiangfeng & Song, Jian & Han, Zengxiao & Pervunin, Konstantin S. & Markides, Christos N., 2022. "Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions," Energy, Elsevier, vol. 256(C).
    4. Wang, Yao & Wang, Qianlong & Yu, Jianlin & Qian, Suxin, 2023. "A heat pump dual temperature display cabinet using natural refrigerants," Applied Energy, Elsevier, vol. 330(PB).
    5. Acha, Salvador & Le Brun, Niccolo & Damaskou, Maria & Fubara, Tekena Craig & Mulgundmath, Vinay & Markides, Christos N. & Shah, Nilay, 2020. "Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector," Energy, Elsevier, vol. 206(C).
    6. Hessam Golmohamadi & Saeed Golestan & Rakesh Sinha & Birgitte Bak-Jensen, 2024. "Demand-Side Flexibility in Power Systems, Structure, Opportunities, and Objectives: A Review for Residential Sector," Energies, MDPI, vol. 17(18), pages 1-22, September.
    7. Guo, Jiangfeng & Song, Jian & Narayan, Surya & Pervunin, Konstantin S. & Markides, Christos N., 2023. "Numerical investigation of the thermal-hydraulic performance of horizontal supercritical CO2 flows with half-wall heat-flux conditions," Energy, Elsevier, vol. 264(C).
    8. Peters, Toby & Sayin, Leylan, 2022. "Future-Proofing Sustainable Cooling Demand," ADBI Working Papers 1316, Asian Development Bank Institute.
    9. Le Brun, Niccolo & Simpson, Michael & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "Techno-economic potential of low-temperature, jacket-water heat recovery from stationary internal combustion engines with organic Rankine cycles: A cross-sector food-retail study," Applied Energy, Elsevier, vol. 274(C).
    10. João Garcia & Arian Semedo, 2024. "Sustainable CO 2 Refrigeration System for Fish Cold Storage Facility Using a Renewable Integrated System with Solar, Wind and Tidal Energy for Cape Verde—Analyzing Scenarios," Sustainability, MDPI, vol. 16(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5923-:d:1529596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.