IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924017318.html
   My bibliography  Save this article

Optimizing deep decarbonization pathways in California with power system planning using surrogate level-based Lagrangian relaxation

Author

Listed:
  • Anderson, Osten
  • Bragin, Mikhail A.
  • Yu, Nanpeng

Abstract

With California’s ambitious goals to decarbonize the electrical grid by 2045, significant challenges arise in power system investment planning. Existing modeling methods and software focus on computational efficiency, which is currently achieved by simplifying the associated formulations. The simplifications, such as linear relaxation of binary decisions, may lead to significant inaccuracies in the cost and constraints of generation operations and may affect both the timing and the extent of investment in new resources, such as renewable energy and energy storage. To address this issue, this paper develops a more detailed and rigorous mixed-integer linear programming model where the discrete nature of the problem is properly captured. Further, a solution methodology utilizing surrogate level-based Lagrangian relaxation is adapted to address the combinatorial complexity that results from the enhanced level of model detail. Our methodology is capable of efficiently handling the decarbonization model with approximately 12 million binary and 100 million total variables in under 48 h, representing a massive leap in the ability to solve complex planning models in acceptable time. The solution obtained by our method leads to an investment plan, which is then compared with the plan produced by E3’s RESOLVE software currently employed by the California Energy Commission, California Public Utilities Commission as well as by three major California utilities: SCE, PG&E, and SDGE. Our model produces an investment plan that leads to substantial savings to the State of California of over 4 billion dollars over the investment horizon as compared to the existing method.

Suggested Citation

  • Anderson, Osten & Bragin, Mikhail A. & Yu, Nanpeng, 2025. "Optimizing deep decarbonization pathways in California with power system planning using surrogate level-based Lagrangian relaxation," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017318
    DOI: 10.1016/j.apenergy.2024.124348
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikhail A. Bragin & Peter B. Luh & Joseph H. Yan & Nanpeng Yu & Gary A. Stern, 2015. "Convergence of the Surrogate Lagrangian Relaxation Method," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 173-201, January.
    2. Wang, Bo & Zhou, Min & Xin, Bo & Zhao, Xin & Watada, Junzo, 2019. "Analysis of operation cost and wind curtailment using multi-objective unit commitment with battery energy storage," Energy, Elsevier, vol. 178(C), pages 101-114.
    3. Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
    4. X. Zhao & P. B. Luh & J. Wang, 1999. "Surrogate Gradient Algorithm for Lagrangian Relaxation," Journal of Optimization Theory and Applications, Springer, vol. 100(3), pages 699-712, March.
    5. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    6. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    7. Hu, Yuan & Bie, Zhaohong & Ding, Tao & Lin, Yanling, 2016. "An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning," Applied Energy, Elsevier, vol. 167(C), pages 280-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, Osten & Yu, Nanpeng & Hong, Wanshi & Wang, Bin, 2025. "Impact of flexible and bidirectional charging in medium- and heavy-duty trucks on California’s decarbonization pathway," Applied Energy, Elsevier, vol. 377(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    2. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    3. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    4. Olave-Rojas, David & Álvarez-Miranda, Eduardo, 2021. "Towards a complex investment evaluation framework for renewable energy systems: A 2-level heuristic approach," Energy, Elsevier, vol. 228(C).
    5. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    6. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.
    7. Azadian, Farshid & Murat, Alper & Chinnam, Ratna Babu, 2015. "Integrated production and logistics planning: Contract manufacturing and choice of air/surface transportation," European Journal of Operational Research, Elsevier, vol. 247(1), pages 113-123.
    8. Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.
    9. Wang, Tingsong & Xing, Zheng & Hu, Hongtao & Qu, Xiaobo, 2019. "Overbooking and delivery-delay-allowed strategies for container slot allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 433-447.
    10. Monique Guignard, 2020. "Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints," Annals of Operations Research, Springer, vol. 286(1), pages 173-200, March.
    11. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Qu, Xiaobo, 2021. "A two-stage stochastic nonlinear integer-programming model for slot allocation of a liner container shipping service," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 143-160.
    12. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    13. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    14. Bojana Škrbić & Željko Đurišić, 2023. "Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System," Energies, MDPI, vol. 16(7), pages 1-34, April.
    15. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    16. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    17. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    18. L Tang & H Xuan, 2006. "Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with finite intermediate buffers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 316-324, March.
    19. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    20. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.