IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924011085.html
   My bibliography  Save this article

Efficient utilization of cold energy enabled by phase change cold storage brine gels with superior thermophysical properties towards biochemical reagent cold chain

Author

Listed:
  • Liu, Kai
  • Wang, Ling
  • He, Zhifeng
  • Lin, Pengcheng
  • Chen, Ying

Abstract

Phase change cold storage, as an emerging cold chain method of maintaining a low-temperature environment and effectively ensuring the quality of biochemical reagents, is extensively utilized because of its benefits of high energy density, low cost, energy conservation and environmentally friendly mode. However, the low thermal conductivity of working medium affects its cold charging/discharging rate and operating efficiency. Meanwhile, the high leakage characteristic in the phase change process leads to a decrease of cold storage capacity and contamination of items. This work proposes the efficient utilization of cold energy enabled by leakage-free phase change cold storage brine gels with extraordinary high thermal conductivity towards biochemical reagent cold chain. Phase change thermal storage gel is prepared by confining brine in the sodium polyacrylate‑calcium alginate network and porous adsorption of expanded graphite. The prepared materials present leak free characteristics and almost 100% mass retention rate. Expanded graphite addition enables the thermal conductivity increase from 0.542 W m−1 K−1 to an extremely high value of 2.766 W m−1 K−1 (an increase of 510%). The enthalpy value of the cold storage brine gel is as high as 144 Jg−1, stably releasing cold at around −24 °C. By regulating the distribution of cold storage working medium, the minimum temperature difference inside the apparatus can be reduced from 6.7 °C to about 1 °C. Finally, performance-enhancing phase change cold storage materials and apparatus in the cold chain of biological reagents is fruitful, effectively providing a long-lasting and uniform low-temperature environment.

Suggested Citation

  • Liu, Kai & Wang, Ling & He, Zhifeng & Lin, Pengcheng & Chen, Ying, 2024. "Efficient utilization of cold energy enabled by phase change cold storage brine gels with superior thermophysical properties towards biochemical reagent cold chain," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011085
    DOI: 10.1016/j.apenergy.2024.123725
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123725?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Niangzhi & Li, Chuanchang & Zhang, Dongyao & Li, Yaxi & Chen, Jian, 2022. "Emerging phase change cold storage materials derived from sodium sulfate decahydrate," Energy, Elsevier, vol. 245(C).
    2. Liu, Zheng & Huang, Yu-Qing & Shang, Wen-Long & Zhao, Yuan-Jun & Yang, Zao-Li & Zhao, Zhao, 2022. "Precooling energy and carbon emission reduction technology investment model in a fresh food cold chain based on a differential game," Applied Energy, Elsevier, vol. 326(C).
    3. Zou, Ting & Fu, Wanwan & Liang, Xianghui & Wang, Shuangfeng & Gao, Xuenong & Zhang, Zhengguo & Fang, Yutang, 2020. "Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O," Energy, Elsevier, vol. 190(C).
    4. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Liu, Lu & Zhang, Xuelai & Xu, Xiaofeng & Lin, Xiangwei & Zhao, Yi & Zou, Lingeng & Wu, Yifan & Zheng, Huifan, 2021. "Development of low-temperature eutectic phase change material with expanded graphite for vaccine cold chain logistics," Renewable Energy, Elsevier, vol. 179(C), pages 2348-2358.
    6. Wang, Fangxian & Zhang, Chao & Liu, Jian & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage," Applied Energy, Elsevier, vol. 188(C), pages 97-106.
    7. Ikutegbe, Charles A. & Al-Shannaq, Refat & Farid, Mohammed M., 2022. "Microencapsulation of low melting phase change materials for cold storage applications," Applied Energy, Elsevier, vol. 321(C).
    8. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Kumar, Sreekala & Tee, Jackson & Seo, Yutaek & Linga, Praveen, 2022. "An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: Application for cold storage and transport," Applied Energy, Elsevier, vol. 308(C).
    9. Li, Gang & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Review of cold storage materials for subzero applications," Energy, Elsevier, vol. 51(C), pages 1-17.
    10. Ahn, Jae Hwan & Kim, Hoon & Kim, Jong Hoon & Kim, Ji Young, 2023. "Evaporative cooling performance characteristics in ice thermal energy storage with direct contact discharging for food cold storage," Applied Energy, Elsevier, vol. 330(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yali & Li, Ming & Emam Hassanien, Reda Hassanien & Wang, Yunfeng & Tang, Runsheng & Zhang, Ying, 2024. "Fabrication of shape-stable glycine water-based phase-change material using modified expanded graphite for cold energy storage," Energy, Elsevier, vol. 290(C).
    2. Li, Mu & Li, Chuanchang & Xie, Baoshan & Cao, Penghui & Liu, Daifei & Li, Yaxi & Peng, Meicheng & Tan, Zhenwei, 2023. "Emerging phase change cold storage gel originated from calcium chloride hexahydrate," Energy, Elsevier, vol. 284(C).
    3. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    4. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Shi, X.J. & Zhang, P., 2016. "Conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes," Energy, Elsevier, vol. 99(C), pages 58-68.
    6. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    7. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    8. Hua Pan & Huimin Zhu & Minmin Teng, 2023. "Low-Carbon Transformation Strategy for Blockchain-Based Power Supply Chain," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    9. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    10. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    11. Gowthami, D. & Sharma, R.K., 2023. "Influence of Hydrophilic and Hydrophobic modification of the porous matrix on the thermal performance of form stable phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    13. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    14. Zhang, Guanhua & Yu, Zhenjie & Cui, Guomin & Dou, Binlin & Lu, Wei & Yan, Xiaoyu, 2020. "Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity," Renewable Energy, Elsevier, vol. 151(C), pages 542-550.
    15. Li, Jiaqi & Tu, Rang & Liu, Mengdan & Wang, Siqi, 2021. "Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields," Energy, Elsevier, vol. 221(C).
    16. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Li, Dong & Cai, Jiangkuo & Arıcı, Müslüm & Zhao, Xuefeng & Meng, Lan & Wu, Yangyang & Gao, Meng & Wang, Di, 2024. "Operational characteristics of solar-gas combined heating water system with phase change heat storage units for oilfield hot water stations," Energy, Elsevier, vol. 302(C).
    18. Ali M. Sefidan & Mehdi E. Sangari & Mathieu Sellier & Md. Imran Hossen Khan & Suvash C. Saha, 2022. "Modeling of Multi-Layer Phase Change Material in a Triplex Tube under Various Thermal Boundary Conditions," Energies, MDPI, vol. 15(9), pages 1-14, May.
    19. Soh, Alex & Huang, Zhifeng & Shao, Yunlin & Islam, M.R. & Chua, K.J., 2023. "On the study of a thermal system for continuous cold energy harvesting and supply from LNG regasification," Energy, Elsevier, vol. 275(C).
    20. Zheng Liu & Wenzhuo Sun & Bin Hu & Chunjia Han & Petros Ieromonachou & Yuanjun Zhao & Jiazhuo Zheng, 2023. "Research on Supply Chain Optimization Considering Consumer Subsidy Mechanism in the Context of Carbon Neutrality," Energies, MDPI, vol. 16(7), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924011085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.