IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3465-d811743.html
   My bibliography  Save this article

Modeling of Multi-Layer Phase Change Material in a Triplex Tube under Various Thermal Boundary Conditions

Author

Listed:
  • Ali M. Sefidan

    (Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand)

  • Mehdi E. Sangari

    (Faculty of Mechanical Engineering, University of Tabriz, 29th Bahman Blvd., Tabriz 51666-16471, Iran)

  • Mathieu Sellier

    (Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand)

  • Md. Imran Hossen Khan

    (School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia)

  • Suvash C. Saha

    (School of Mechanical and Mechatronic Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

Nowadays, limited energy resources face ever-growing demands of the modern world. One engineering approach to mitigate this problem which has received considerable attention in recent years is using latent heat thermal storage (LHTS) systems, a significant opportunity which is provided by phase change materials (PCMs). In the present study, a numerical investigation was devoted to estimate the simultaneous freezing and melting processes of a double-layer PCM in terms of heat transfer and fluid flow phenomena. A double-pipe cylindrical channel with two compartments, A and B, was considered for locating two PCMs of RT28 and RT35 in various arrangements. The inner and outer walls were exposed to both hot and cold heat transfer fluids (HHTFs and CHTFs, respectively) beginning with solid or liquid initial state, which led to solid–liquid phase change process through PCMs. The numerical simulation was handled by a two-dimensional finite volume method (FVM) with a fixed Rayleigh number of 106 in which conduction and convection heat transfer mechanisms are taken into account. The effects of employing double-layer PCM and their arrangements, inner and outer walls’ boundary conditions, and initial statuses of PCMs are discussed, and the details of the compared results are shown in the form of temperature and liquid fraction variations over time.

Suggested Citation

  • Ali M. Sefidan & Mehdi E. Sangari & Mathieu Sellier & Md. Imran Hossen Khan & Suvash C. Saha, 2022. "Modeling of Multi-Layer Phase Change Material in a Triplex Tube under Various Thermal Boundary Conditions," Energies, MDPI, vol. 15(9), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3465-:d:811743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei, Lien Chin & Malen, Jonathan A., 2016. "Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity," Applied Energy, Elsevier, vol. 181(C), pages 224-231.
    2. Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
    3. Wang, Fangxian & Zhang, Chao & Liu, Jian & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage," Applied Energy, Elsevier, vol. 188(C), pages 97-106.
    4. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    5. Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
    6. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    2. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    3. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    7. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
    8. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    9. Yang, Chao & Xu, Xing-Rong & Bake, Maitiniyazi & Wu, Chun-Mei & Li, You-Rong & Zheng, Zhang-Jing & Yu, Jia-Jia, 2024. "Numerical investigation and optimization of the melting performance of latent heat thermal energy storage unit strengthened by graded metal foam and mechanical rotation," Renewable Energy, Elsevier, vol. 227(C).
    10. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    11. Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
    12. Yang, Xiaohu & Bai, Qingsong & Zhang, Qunli & Hu, Wenju & Jin, Liwen & Yan, Jinyue, 2018. "Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage," Applied Energy, Elsevier, vol. 225(C), pages 585-599.
    13. Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
    14. Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
    15. Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
    16. Hou, Yujie & Chen, Hua & Liu, Xiuli, 2022. "Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM," Renewable Energy, Elsevier, vol. 192(C), pages 561-571.
    17. Zhang, Chengbin & Li, Jie & Chen, Yongping, 2020. "Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins," Applied Energy, Elsevier, vol. 259(C).
    18. Huanpei Zheng & Changhong Wang, 2017. "Numerical and Experimental Studies on the Heat Transfer Performance of Copper Foam Filled with Paraffin," Energies, MDPI, vol. 10(7), pages 1-13, July.
    19. Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3465-:d:811743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.