IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i11p1861-d1516309.html
   My bibliography  Save this article

Multi-Scale Analysis of Carbon Emissions in Coastal Cities Based on Multi-Source Data: A Case Study of Qingdao, China

Author

Listed:
  • Qingchun Guan

    (College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China)

  • Tianya Meng

    (College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China)

  • Chengyang Guan

    (College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

  • Junwen Chen

    (College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China)

  • Hui Li

    (College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China)

  • Xu Zhou

    (College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China)

Abstract

Coastal cities, as centers of economic and industrial activity, accommodate over 40% of the national population and generate more than 70% of the GDP. They are critical centers of carbon emissions, making the accurate and long-term analysis of spatiotemporal carbon emission patterns crucial for developing effective regional carbon reduction strategies. However, there is a scarcity of studies on continuous long-term carbon emissions in coastal cities. This study focuses on Qingdao and explores its carbon emission characteristics at the city, county, and grid scales. Data from multi-source are employed, integrating net primary production (NPP), energy consumption, and nighttime light data to construct a carbon emission estimation model. Additionally, the Tapio model is applied to examine the decoupling of GDP from carbon emissions. The results indicate that the R 2 of the carbon emission inversion model is 0.948. The central urban areas of Qingdao’s coastal region are identified as hotspots for carbon emissions, exhibiting significantly higher emissions compared to inland areas. There is a notable dependence of economic development on carbon emissions, and the disparities in economic development between coastal and inland areas have resulted in significant geographical differentiation in the decoupling state. Furthermore, optimizing and transitioning the energy structure has primarily contributed to carbon reduction, while exceptional circumstances, such as the COVID-19 pandemic, have led to passive fluctuations in emissions. This study provides a scientific reference for coastal cities to formulate targeted carbon reduction policies.

Suggested Citation

  • Qingchun Guan & Tianya Meng & Chengyang Guan & Junwen Chen & Hui Li & Xu Zhou, 2024. "Multi-Scale Analysis of Carbon Emissions in Coastal Cities Based on Multi-Source Data: A Case Study of Qingdao, China," Land, MDPI, vol. 13(11), pages 1-20, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1861-:d:1516309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/11/1861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/11/1861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuantao Yang & Shen Qu & Bofeng Cai & Sai Liang & Zhaohua Wang & Jinnan Wang & Ming Xu, 2020. "Mapping global carbon footprint in China," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Haider Mahmood & Maham Furqan & Muhammad Shahid Hassan & Soumen Rej, 2023. "The Environmental Kuznets Curve (EKC) Hypothesis in China: A Review," Sustainability, MDPI, vol. 15(7), pages 1-32, April.
    3. Zhenggen Fan & Wentong Xia & Hu Yu & Ji Liu & Binghua Liu, 2024. "Spatiotemporal Pattern and Spatial Convergence of Land Use Carbon Emission Efficiency in the Pan-Pearl River Delta: Based on the Difference in Land Use Carbon Budget," Land, MDPI, vol. 13(5), pages 1-27, May.
    4. Jaqueson K. Galimberti, 2020. "Forecasting GDP Growth from Outer Space," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 697-722, August.
    5. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    6. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    7. Xiping Zhang & Jianbin Xu & Saiying Zhong & Ziheng Wang, 2024. "Assessing Uneven Regional Development Using Nighttime Light Satellite Data and Machine Learning Methods: Evidence from County-Level Improved HDI in China," Land, MDPI, vol. 13(9), pages 1-19, September.
    8. Han, Albert Tonghoon & Kim, Heesoo & Remigio, Jonah & Oh, Chansol, 2024. "Impacts of New Town developments on carbon sinks: Implications from the Case of Seoul Metropolitan Area, Korea," Land Use Policy, Elsevier, vol. 143(C).
    9. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    10. Yuxin Tang & Ran Wang & Hui Ci & Jinyuan Wei & Hui Yang & Jiakun Teng & Zhaojin Yan, 2024. "Analysis of the Spatiotemporal Evolution of Carbon Budget and Carbon Compensation Zoning in the Core Area of the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 13(6), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adedayo Johnson Ogungbile & Geoffrey Qiping Shen & Ibrahim Yahaya Wuni & Jin Xue & Jingke Hong, 2021. "A Hybrid Framework for Direct CO 2 Emissions Quantification in China’s Construction Sector," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
    2. Aditya Prana Iswara & Aulia Ulfah Farahdiba & Rachmat Boedisantoso & Anwar Rosyid & Sunu Priambodo & Lin-Han Chiang Hsieh, 2023. "Carbon footprint of offshore platform in Indonesia using life cycle approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11263-11284, October.
    3. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    4. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    5. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    6. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    7. Yanxiao Jiang & Zhou Huang, 2024. "Impact of urban vitality on carbon emission—an analysis of 222 Chinese cities based on the spatial Durbin model," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    8. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    9. Sharath Ankathi & Zifeng Lu & George G. Zaimes & Troy Hawkins & Yu Gan & Michael Wang, 2022. "Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2045-2056, December.
    10. Menezes, Flavio & Figer, Vivian & Jardim, Fernanda & Medeiros, Pedro, 2022. "A near real-time economic activity tracker for the Brazilian economy during the COVID-19 pandemic," Economic Modelling, Elsevier, vol. 112(C).
    11. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    12. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    13. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    14. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    15. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    16. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    17. Chunli Zhou & Yuze Tang & Deyan Zhu & Zhiwei Cui, 2024. "Tracking the Carbon Emissions Using Electricity Big Data: A Case Study of the Metal Smelting Industry," Energies, MDPI, vol. 17(3), pages 1-19, January.
    18. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    19. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    20. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:11:p:1861-:d:1516309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.