IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924002204.html
   My bibliography  Save this article

China carbon emission accounts 2020-2021

Author

Listed:
  • Xu, Jinghang
  • Guan, Yuru
  • Oldfield, Jonathan
  • Guan, Dabo
  • Shan, Yuli

Abstract

In the past a few years, the outbreak of the COVID-19 epidemic has significantly changed global emission patterns and increased the challenges in emission reduction. However, a comprehensive analysis of the most recent trends of China's carbon emissions has not been conducted due to a lack of up-to-date emission accounts by regions and sectors. This study compiles the latest CO2 emission inventories for China and its 30 provinces during the epidemic (2020−2021), following the administrative-territorial approach from the International Panel on Climate Change (IPCC). Our inventories cover energy-related emissions from 17 types of fossil fuel combustion and cement production across 47 economic sectors. To provide a holistic view of emission patterns, we esitamted consumption-based emissions in China. We find that the COVID-19 epidemic led to a 50% reduction in the growth rate of territorial emissions in 2020 compared to 2019. This trend then reversed in 2021 as lockdown measures gradually relaxed. Our study reveals the impact of the rapid expansion of exports, driven by epidemic prevention materials and “stay-at-home economy” products on widening the differences between territorial- and consumption-based emissions. Our study offers a timely blueprint for designing strategies towards carbon peak and neutrality, especially in the context of sustainable recoveries and carbon mitigation post-pandemic.

Suggested Citation

  • Xu, Jinghang & Guan, Yuru & Oldfield, Jonathan & Guan, Dabo & Shan, Yuli, 2024. "China carbon emission accounts 2020-2021," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002204
    DOI: 10.1016/j.apenergy.2024.122837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    2. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    3. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    4. Ou, Jiamin & Meng, Jing & Zheng, Junyu & Mi, Zhifu & Bian, Yahui & Yu, Xiang & Liu, Jingru & Guan, Dabo, 2017. "Demand-driven air pollutant emissions for a fast-developing region in China," Applied Energy, Elsevier, vol. 204(C), pages 131-142.
    5. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    6. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    7. Corinne Le Quéré & Glen P. Peters & Pierre Friedlingstein & Robbie M. Andrew & Josep G. Canadell & Steven J. Davis & Robert B. Jackson & Matthew W. Jones, 2021. "Fossil CO2 emissions in the post-COVID-19 era," Nature Climate Change, Nature, vol. 11(3), pages 197-199, March.
    8. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    9. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    10. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Thomas O. Wiedmann & Guangwu Chen & John Barrett, 2016. "The Concept of City Carbon Maps: A Case Study of Melbourne, Australia," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 676-691, August.
    12. Shigeto, Sawako & Yamagata, Yoshiki & Ii, Ryota & Hidaka, Masato & Horio, Masayuki, 2012. "An easily traceable scenario for 80% CO2 emission reduction in Japan through the final consumption-based CO2 emission approach: A case study of Kyoto-city," Applied Energy, Elsevier, vol. 90(1), pages 201-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Peiming & Tian, Xingyue & Zhang, Jiaming & Yu, Siyu & Li, Shiyu & Lin, Chuan & Chen, Litai & Qian, Lei, 2024. "Can the China–Europe Railway Express reduce carbon dioxide emissions? New mechanism of the manufacturing industry substitution effect," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1384-1405.
    2. Rujun Zhao & Hai Chen & Xiaoying Liang & Miaomiao Yang & Yuhe Ma & Wenjing Lu, 2024. "Exploring the Influence of Digital Economy Growth on Carbon Emission Intensity Through the Lens of Energy Consumption," Sustainability, MDPI, vol. 16(21), pages 1-19, October.
    3. Gao, Jinshuang & Li, Sheng & Wu, Fan & Jiang, Long & Zhao, Yazhou & Zhang, Xuejun, 2024. "Study on efficient heating method by solar coupled air source heat pump system with phase change heat storage in severe cold region," Applied Energy, Elsevier, vol. 367(C).
    4. Suiping Zeng & Xinyao Liu & Jian Tian & Jian Zeng, 2024. "Spatial–Temporal Pattern Analysis and Development Forecasting of Carbon Stock Based on Land Use Change Simulation: A Case Study of the Xiamen–Zhangzhou–Quanzhou Urban Agglomeration, China," Land, MDPI, vol. 13(4), pages 1-26, April.
    5. Hua Duan & Bin Li & Qi Wang, 2024. "Static High-Quality Development Efficiency and Its Dynamic Changes for China: A Non-Radial Directional Distance Function and a Metafrontier Non-Radial Malmquist Model," Mathematics, MDPI, vol. 12(15), pages 1-19, July.
    6. Xiaoqiu Chen & Jinxiang Wang, 2024. "The Impact of Regional Carbon Emission Reduction on Corporate ESG Performance in China," Sustainability, MDPI, vol. 16(13), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    2. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    3. Zhu Liu & Zhu Deng & Philippe Ciais & Jianguang Tan & Biqing Zhu & Steven J. Davis & Robbie Andrew & Olivier Boucher & Simon Ben Arous & Pep Canadel & Xinyu Dou & Pierre Friedlingstein & Pierre Gentin, 2021. "Global Daily CO$_2$ emissions for the year 2020," Papers 2103.02526, arXiv.org.
    4. Ghazala Aziz & Zouheir Mighri, 2022. "Carbon Dioxide Emissions and Forestry in China: A Spatial Panel Data Approach," Sustainability, MDPI, vol. 14(19), pages 1-40, October.
    5. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    6. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    7. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
    8. Xinyu Han & Peng Qu & Jiaqi Wu & Beile Su & Ning Qiu & Lili Zhang, 2023. "Research on the Spatial Pattern of Carbon Emissions and Differentiated Peak Paths at the County Level in Shandong Province, China," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    9. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    10. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    11. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.
    12. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    13. Jing Wang & Jie Li, 2021. "Exploring the Impact of International Trade on Carbon Emissions: New Evidence from China’s 282 Cities," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
    14. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    15. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    16. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    17. Shi, Jianglan & Li, Chao & Li, Huajiao, 2022. "Energy consumption in China's ICT sectors: From the embodied energy perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    19. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    20. Xuecheng Wang & Xu Tang & Zhenhua Feng & Yi Zhang, 2019. "Characterizing the Embodied Carbon Emissions Flows and Ecological Relationships among Four Chinese Megacities and Other Provinces," Sustainability, MDPI, vol. 11(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.