IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019621.html
   My bibliography  Save this article

Industrialization, urbanization, and innovation: Nonlinear drivers of carbon emissions in Chinese cities

Author

Listed:
  • Qiao, Renlu
  • Liu, Xiaochang
  • Gao, Shuo
  • Liang, Diling
  • GesangYangji, Gesang
  • Xia, Li
  • Zhou, Shiqi
  • Ao, Xiang
  • Jiang, Qingrui
  • Wu, Zhiqiang

Abstract

As the world's largest developing nation, China has emerged as the predominant carbon emitter due to its swift industrialization and urbanization. Achieving low-carbon development in China necessitates a tailored approach that accounts for each city's unique industrial phase, technological advancements, urbanization level, and resources. This research endeavors to elucidate the nonlinear mechanism influencing carbon emissions in Chinese cities using a machine-learning framework, drawing on panel data from 290 cities from 2000 to 2017. The result indicates that China is experiencing a transition in the primary drivers of carbon emissions from the agriculture sector to the industrial and service sectors. A city transitions to the carbon decoupling phase when the outputs of primary, secondary, and tertiary industries surpass 1500, 125,000, and 100,000 CNY per capita, respectively. Additionally, we observed that expanding the urban built-up area beyond 10% can significantly mitigate carbon emission intensity. However, the study also highlights a critical challenge: the initial emission-reducing effects of innovation in burgeoning high-tech industries are negated by the higher emissions from traditional industries. Moreover, our analysis indicates that R&D investments exceeding RMB 8000 per capita may paradoxically lead to an increase in emissions. With these conclusions of nonlinearity, we emphasize designing policies tailored to the specificities of each city, stressing the importance of adaptability in policy creation.

Suggested Citation

  • Qiao, Renlu & Liu, Xiaochang & Gao, Shuo & Liang, Diling & GesangYangji, Gesang & Xia, Li & Zhou, Shiqi & Ao, Xiang & Jiang, Qingrui & Wu, Zhiqiang, 2024. "Industrialization, urbanization, and innovation: Nonlinear drivers of carbon emissions in Chinese cities," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019621
    DOI: 10.1016/j.apenergy.2023.122598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaohua & Zhang, Bin & Liu, Tongfan, 2016. "Empirical analysis on the factors influencing national and regional carbon intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 34-42.
    2. ZhongXiang Zhang, 2012. "Who should bear the cost of China’s carbon emissions embodied in goods for exports?," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(2), pages 103-117, June.
    3. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    4. Zong, Yi & Gu, Guoda, 2022. "The threshold effect of manufacturing Servitization on carbon emission: An empirical analysis based on multinational panel data," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 353-364.
    5. Zhu, Hui-Ming & You, Wan-Hai & Zeng, Zhao-fa, 2012. "Urbanization and CO2 emissions: A semi-parametric panel data analysis," Economics Letters, Elsevier, vol. 117(3), pages 848-850.
    6. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    7. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    8. Quanliang Ye & Maarten S. Krol & Yuli Shan & Joep F. Schyns & Markus Berger & Klaus Hubacek, 2023. "Allocating capital-associated CO2 emissions along the full lifespan of capital investments helps diffuse emission responsibility," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    10. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    11. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    12. Li, Huanan & Mu, Hailin & Zhang, Ming & Gui, Shusen, 2012. "Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions," Energy, Elsevier, vol. 39(1), pages 319-326.
    13. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    14. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    15. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    16. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    17. Lingming Chen & Wenzhong Ye & Congjia Huo & Kieran James, 2020. "Environmental Regulations, the Industrial Structure, and High-Quality Regional Economic Development: Evidence from China," Land, MDPI, vol. 9(12), pages 1-22, December.
    18. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Chen, Zuoqi & Liu, Rui & Li, Linyi & Wu, Jianping, 2016. "Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis," Applied Energy, Elsevier, vol. 168(C), pages 523-533.
    19. Xiao, Hongwei & Ma, Zhongyu & Mi, Zhifu & Kelsey, John & Zheng, Jiali & Yin, Weihua & Yan, Min, 2018. "Spatio-temporal simulation of energy consumption in China's provinces based on satellite night-time light data," Applied Energy, Elsevier, vol. 231(C), pages 1070-1078.
    20. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    21. Jing Lan & Makoto Kakinaka & Xianguo Huang, 2012. "Foreign Direct Investment, Human Capital and Environmental Pollution in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(2), pages 255-275, February.
    22. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
    23. Cai, Bofeng & Cui, Can & Zhang, Da & Cao, Libin & Wu, Pengcheng & Pang, Lingyun & Zhang, Jihong & Dai, Chunyan, 2019. "China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    24. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
    25. Feng Dong & Ruyin Long & Zhuolin Li & Yuanju Dai, 2016. "Analysis of carbon emission intensity, urbanization and energy mix: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1375-1391, June.
    26. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    27. Rong Tang & Jing Zhao & Yifan Liu & Xin Huang & Yanxu Zhang & Derong Zhou & Aijun Ding & Chris P. Nielsen & Haikun Wang, 2022. "Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    2. Qiao, Renlu & Wu, Zhiqiang & Jiang, Qingrui & Liu, Xiaochang & Gao, Shuo & Xia, Li & Yang, Tianren, 2024. "The nonlinear influence of land conveyance on urban carbon emissions: An interpretable ensemble learning-based approach," Land Use Policy, Elsevier, vol. 140(C).
    3. Renlu Qiao & Shuo Gao & Xiaochang Liu & Li Xia & Guobin Zhang & Xi Meng & Zhiyu Liu & Mo Wang & Shiqi Zhou & Zhiqiang Wu, 2024. "Understanding the global subnational migration patterns driven by hydrological intrusion exposure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaozhou Qi & Huarong Peng & Xiujie Tan, 2019. "The Moderating Effect of R&D Investment on Income and Carbon Emissions in China: Direct and Spatial Spillover Insights," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    2. Huang, Junbing & Liu, Qiang & Cai, Xiaochen & Hao, Yu & Lei, Hongyan, 2018. "The effect of technological factors on China's carbon intensity: New evidence from a panel threshold model," Energy Policy, Elsevier, vol. 115(C), pages 32-42.
    3. Jing Wang & Jie Li, 2021. "Exploring the Impact of International Trade on Carbon Emissions: New Evidence from China’s 282 Cities," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
    4. Huang, Junbing & Luan, Bingjiang & He, Wanrui & Chen, Xiang & Li, Mengfan, 2022. "Energy technology of conservation versus substitution and energy intensity in China," Energy, Elsevier, vol. 244(PA).
    5. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    6. Tianjiao Yang & Jing Liu & Haibo Mi & Zhicheng Cao & Yiting Wang & Huichao Han & Jiahui Luan & Zhaoxuan Wang, 2022. "An Estimating Method for Carbon Emissions of China Based on Nighttime Lights Remote Sensing Satellite Images," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    7. Huang, Junbing & Xiang, Shiqi & Wang, Yajun & Chen, Xiang, 2021. "Energy-saving R&D and carbon intensity in China," Energy Economics, Elsevier, vol. 98(C).
    8. Yingqi Wei & Sasa Ding & Ziko Konwar, 2022. "The two faces of FDI in environmental performance: a meta-analysis of empirical evidence in China," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 20(1), pages 65-94, January.
    9. Yi Xiao & Yuantao Liao & Zhe Li & Zhuojun Li & Shaojian Wang, 2023. "Impacts of Land Urbanization on CO 2 Emissions: Policy Implications Based on Developmental Stages," Land, MDPI, vol. 12(10), pages 1-15, October.
    10. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    11. Hu, Ting & Huang, Xin, 2019. "A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 240(C), pages 778-792.
    12. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    13. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    14. Huang, Junbing & Cai, Xiaochen & Huang, Shuo & Tian, Sen & Lei, Hongyan, 2019. "Technological factors and total factor productivity in China: Evidence based on a panel threshold model," China Economic Review, Elsevier, vol. 54(C), pages 271-285.
    15. Pan, Xiuzhen & Wei, Zixiang & Han, Botang & Shahbaz, Muhammad, 2021. "The heterogeneous impacts of interregional green technology spillover on energy intensity in China," Energy Economics, Elsevier, vol. 96(C).
    16. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    17. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    18. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    19. Feng Dong & Guoqing Li & Yajie Liu & Qing Xu & Caixia Li, 2023. "Spatial-Temporal Evolution and Cross-Industry Synergy of Carbon Emissions: Evidence from Key Industries in the City in Jiangsu Province, China," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    20. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.