IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010730.html
   My bibliography  Save this article

Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties

Author

Listed:
  • Zhang, Rufeng
  • Chen, Yan
  • Li, Zhengmao
  • Jiang, Tao
  • Li, Xue

Abstract

With the widespread adoption of combined heat and power and power-to-heat technologies, multi-energy microgrids (MEMGs) have been garnering significant research attention from both industry and academia. However, dealing with uncertainties from renewable energy and load and coordinating multiple energy carriers are the main challenges for MEMG operation. In this regard, a two-stage robust operation method of electricity-gas-heat integrated MEMGs considering heterogeneous uncertainties is proposed in this paper. First, network models for an electricity-gas-heat-based distribution-level MEMG are formulated considering the dynamic characteristics of gas and heat networks. Then, the power-to‑hydrogen-and-heat unit and ladder-type carbon trading mechanism are introduced to reduce the curtailment of wind power and carbon emissions. Further, a two-stage robust optimization (TSRO) method is applied to tackle uncertainties of wind power and load under extreme scenarios in the MEMG operation by iteratively solving the operation problem with the column and constraint generation (C&CG) algorithm. Finally, case studies are conducted to verify our proposed method, demonstrating that it can reduce the multi-energy supply cost while the stepped carbon trading mechanism can also significantly reduce carbon emissions.

Suggested Citation

  • Zhang, Rufeng & Chen, Yan & Li, Zhengmao & Jiang, Tao & Li, Xue, 2024. "Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010730
    DOI: 10.1016/j.apenergy.2024.123690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    2. Liu, Chunyu & Zheng, Xinrui & Yang, Haibin & Tang, Waiching & Sang, Guochen & Cui, Hongzhi, 2023. "Techno-economic evaluation of energy storage systems for concentrated solar power plants using the Monte Carlo method," Applied Energy, Elsevier, vol. 352(C).
    3. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
    4. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    5. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
    6. Arnaoutakis, Georgios E. & Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2022. "Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance," Applied Energy, Elsevier, vol. 323(C).
    7. Fan, Jingjing & Wang, Jianliang & Liu, Mingming & Sun, Wangmin & Lan, Zhixuan, 2022. "Scenario simulations of China's natural gas consumption under the dual-carbon target," Energy, Elsevier, vol. 252(C).
    8. Liu, Changchun & Su, Xu & Yin, Zhao & Sheng, Yong & Zhou, Xuezhi & Xu, Yujie & Wang, Xudong & Chen, Haisheng, 2024. "Experimental study on the feasibility of isobaric compressed air energy storage as wind power side energy storage," Applied Energy, Elsevier, vol. 364(C).
    9. Zhang, Yachao & Le, Jian & Zheng, Feng & Zhang, Yi & Liu, Kaipei, 2019. "Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration," Renewable Energy, Elsevier, vol. 135(C), pages 122-135.
    10. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    11. Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
    12. Georgios E. Arnaoutakis & Gudrun Kocher-Oberlehner & Dimitris Al. Katsaprakakis, 2023. "Criteria-Based Model of Hybrid Photovoltaic–Wind Energy System with Micro-Compressed Air Energy Storage," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongao Xie & Qihang Jin & Guanli Su & Wei Lu, 2024. "A Review of Hydrogen Storage and Transportation: Progresses and Challenges," Energies, MDPI, vol. 17(16), pages 1-30, August.
    2. Zhiming Gu & Tingzhe Pan & Bo Li & Xin Jin & Yaohua Liao & Junhao Feng & Shi Su & Xiaoxin Liu, 2024. "Enhancing Photovoltaic Grid Integration through Generative Adversarial Network-Enhanced Robust Optimization," Energies, MDPI, vol. 17(19), pages 1-15, September.
    3. Kasin Ransikarbum & Hartmut Zadek & Jettarat Janmontree, 2024. "Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis," Energies, MDPI, vol. 17(16), pages 1-22, August.
    4. Milad Mohammadyari & Mohsen Eskandari, 2024. "Stochastic Convex Cone Programming for Joint Optimal BESS Operation and Q-Placement in Net-Zero Microgrids," Energies, MDPI, vol. 17(17), pages 1-16, August.
    5. Roxana Grigore & Aneta Hazi & Ioan Viorel Banu & Sorin Eugen Popa & Sorin Gabriel Vernica, 2024. "Enhancing the Energy Performance of a Gas Turbine: Component of a High-Efficiency Cogeneration Plant," Energies, MDPI, vol. 17(19), pages 1-17, September.
    6. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    7. Mahmoud Kiasari & Mahdi Ghaffari & Hamed H. Aly, 2024. "A Comprehensive Review of the Current Status of Smart Grid Technologies for Renewable Energies Integration and Future Trends: The Role of Machine Learning and Energy Storage Systems," Energies, MDPI, vol. 17(16), pages 1-38, August.
    8. Xu Guo & Yang Li & Feng Wu & Linjun Shi & Yuzhe Chen & Hailun Wang, 2024. "Optimal Battery Storage Configuration for High-Proportion Renewable Power Systems Considering Minimum Inertia Requirements," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    9. Seung-Jin Yoon & Kyung-Sang Ryu & Chansoo Kim & Yang-Hyun Nam & Dae-Jin Kim & Byungki Kim, 2024. "Optimal Bidding Scheduling of Virtual Power Plants Using a Dual-MILP (Mixed-Integer Linear Programming) Approach under a Real-Time Energy Market," Energies, MDPI, vol. 17(15), pages 1-16, July.
    10. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    11. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    12. Shuang Zeng & Heng Zhang & Fang Wang & Baoqun Zhang & Qiwen Ke & Chang Liu, 2024. "Two-Stage Optimization Scheduling of Integrated Energy Systems Considering Demand Side Response," Energies, MDPI, vol. 17(20), pages 1-23, October.
    13. Bożena Łosiewicz, 2024. "Technology for Green Hydrogen Production: Desk Analysis," Energies, MDPI, vol. 17(17), pages 1-41, September.
    14. Shah Faisal & Ciwei Gao, 2024. "A Comprehensive Review of Integrated Energy Systems Considering Power-to-Gas Technology," Energies, MDPI, vol. 17(18), pages 1-21, September.
    15. Afshin Tatar & Amin Shokrollahi & Abbas Zeinijahromi & Manouchehr Haghighi, 2024. "Deep Learning for Predicting Hydrogen Solubility in n-Alkanes: Enhancing Sustainable Energy Systems," Sustainability, MDPI, vol. 16(17), pages 1-24, August.
    16. Simona Di Fraia & Rafał Figaj & Musannif Shah & Laura Vanoli, 2024. "Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production," Energies, MDPI, vol. 17(21), pages 1-24, November.
    17. Yinguo Yang & Ying Yang & Qiuyu Lu & Dexu Liu & Pingping Xie & Mu Wang & Zhenfan Yu & Yang Liu, 2024. "Comprehensive Evaluation of a Pumped Storage Operation Effect Considering Multidimensional Benefits of a New Power System," Energies, MDPI, vol. 17(17), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Guangsheng & Gu, Wei & Qiu, Haifeng & Lu, Yuping & Zhou, Suyang & Wu, Zhi, 2020. "Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen," Applied Energy, Elsevier, vol. 270(C).
    2. Liemberger, Werner & Halmschlager, Daniel & Miltner, Martin & Harasek, Michael, 2019. "Efficient extraction of hydrogen transported as co-stream in the natural gas grid – The importance of process design," Applied Energy, Elsevier, vol. 233, pages 747-763.
    3. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    4. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Dong, Haiyan & Fu, Yanbo & Jia, Qingquan & Zhang, Tie & Meng, Dequn, 2023. "Low carbon optimization of integrated energy microgrid based on life cycle analysis method and multi time scale energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 60-71.
    6. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    8. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    9. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    10. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    11. Zhao, Kai & Tian, Zhenyu & Zhang, Jinrui & Lu, Buchu & Hao, Yong, 2023. "Methanol steam reforming reactor with fractal tree-shaped structures for photovoltaic–thermochemical hybrid power generation," Applied Energy, Elsevier, vol. 330(PB).
    12. Fischer, David & Kaufmann, Florian & Hollinger, Raphael & Voglstätter, Christopher, 2018. "Real live demonstration of MPC for a power-to-gas plant," Applied Energy, Elsevier, vol. 228(C), pages 833-842.
    13. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    14. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    15. Kleperis Jānis & Sloka Biruta & Dimants Justs & Dimanta Ilze & Kleperis Jānis, 2016. "Solution to Urban Air Pollution – Carbon Free Transport," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 4(1), pages 32-47, November.
    16. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    17. Ke, Xinda & Wu, Di & Rice, Jennie & Kintner-Meyer, Michael & Lu, Ning, 2016. "Quantifying impacts of heat waves on power grid operation," Applied Energy, Elsevier, vol. 183(C), pages 504-512.
    18. Li, Jing & Lu, Tianguang & Yi, Xinning & Hao, Ran & Ai, Qian & Guo, Yu & An, Molin & Wang, Shaorui & He, Xueqian & Li, Yixiao, 2024. "Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance," Renewable Energy, Elsevier, vol. 226(C).
    19. Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).
    20. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.