IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5060-d1496760.html
   My bibliography  Save this article

Two-Stage Optimization Scheduling of Integrated Energy Systems Considering Demand Side Response

Author

Listed:
  • Shuang Zeng

    (State Grid Beijing Electric Power Company, Beijing 100075, China)

  • Heng Zhang

    (State Grid Beijing Electric Power Company, Beijing 100075, China)

  • Fang Wang

    (State Grid Beijing Electric Power Company, Beijing 100075, China)

  • Baoqun Zhang

    (State Grid Beijing Electric Power Company, Beijing 100075, China)

  • Qiwen Ke

    (State Grid Beijing Electric Power Company, Beijing 100075, China)

  • Chang Liu

    (State Grid Beijing Electric Power Company, Beijing 100075, China)

Abstract

This study proposes a two-level optimization scheduling method for multi-region integrated energy systems (IESs) that considers dynamic time intervals within the day, addressing the diverse energy characteristics of electricity, heat, and cooling. The day-ahead scheduling aims to minimize daily operating costs by optimally regulating controllable elements. For intra-day scheduling, a predictive control-based dynamic rolling optimization model is utilized, with the upper-level model handling slower thermal energy fluctuations and the lower-level model managing faster electrical energy fluctuations. Building on the day-ahead plan, different time intervals are used for fast and slow layers. The slow layer establishes a decision index for command cycle intervals, dynamically adjusting based on ultra-short-term forecasts and incremental balance corrections. Case studies demonstrate that this method effectively leverages energy network characteristics, optimizes scheduling intervals, reduces adjustment costs, and enhances system performance, achieving coordinated operation of the IES network and multi-energy equipment.

Suggested Citation

  • Shuang Zeng & Heng Zhang & Fang Wang & Baoqun Zhang & Qiwen Ke & Chang Liu, 2024. "Two-Stage Optimization Scheduling of Integrated Energy Systems Considering Demand Side Response," Energies, MDPI, vol. 17(20), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5060-:d:1496760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Rufeng & Chen, Yan & Li, Zhengmao & Jiang, Tao & Li, Xue, 2024. "Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties," Applied Energy, Elsevier, vol. 371(C).
    2. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    3. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
    4. Zhou, Zhe & Zhang, Jianyun & Liu, Pei & Li, Zheng & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "A two-stage stochastic programming model for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 103(C), pages 135-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangdi Li & Qi Tang & Bo Hu & Min Ma, 2022. "Optimal Scheduling of Thermoelectric Coupling Energy System Considering Thermal Characteristics of DHN," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    2. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    4. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    5. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    6. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    7. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    8. Huang, Manyun & Wei, Zhinong & Lin, Yuzhang, 2022. "Forecasting-aided state estimation based on deep learning for hybrid AC/DC distribution systems," Applied Energy, Elsevier, vol. 306(PB).
    9. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    10. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    11. Li, Weiwei & Qian, Tong & Zhao, Wei & Huang, Wenwei & Zhang, Yin & Xie, Xuehua & Tang, Wenhu, 2023. "Decentralized optimization for integrated electricity–heat systems with data center based energy hub considering communication packet loss," Applied Energy, Elsevier, vol. 350(C).
    12. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    13. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    14. Yu Liu & Shan Gao & Xin Zhao & Chao Zhang & Ningyu Zhang, 2017. "Coordinated Operation and Control of Combined Electricity and Natural Gas Systems with Thermal Storage," Energies, MDPI, vol. 10(7), pages 1-25, July.
    15. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    16. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    17. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    18. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.
    19. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    20. Wang, Cheng & Liu, Chuang & Lin, Yuzhang & Bi, Tianshu, 2020. "Day-ahead dispatch of integrated electric-heat systems considering weather-parameter-driven residential thermal demands," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5060-:d:1496760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.