IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4070-d1457459.html
   My bibliography  Save this article

A Review of Hydrogen Storage and Transportation: Progresses and Challenges

Author

Listed:
  • Zongao Xie

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Qihang Jin

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Guanli Su

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Wei Lu

    (School of Mechanical Engineering, Guangxi University, Nanning 530004, China)

Abstract

This review aims to summarize the recent advancements and prevailing challenges within the realm of hydrogen storage and transportation, thereby providing guidance and impetus for future research and practical applications in this domain. Through a systematic selection and analysis of the latest literature, this study highlights the strengths, limitations, and technological progress of various hydrogen storage methods, including compressed gaseous hydrogen, cryogenic liquid hydrogen, organic liquid hydrogen, and solid material hydrogen storage, as well as the feasibility, efficiency, and infrastructure requirements of different transportation modes such as pipeline, road, and seaborne transportation. The findings reveal that challenges such as low storage density, high costs, and inadequate infrastructure persist despite progress in high-pressure storage and cryogenic liquefaction. This review also underscores the potential of emerging technologies and innovative concepts, including metal–organic frameworks, nanomaterials, and underground storage, along with the potential synergies with renewable energy integration and hydrogen production facilities. In conclusion, interdisciplinary collaboration, policy support, and ongoing research are essential in harnessing hydrogen’s full potential as a clean energy carrier. This review concludes that research in hydrogen storage and transportation is vital to global energy transformation and climate change mitigation.

Suggested Citation

  • Zongao Xie & Qihang Jin & Guanli Su & Wei Lu, 2024. "A Review of Hydrogen Storage and Transportation: Progresses and Challenges," Energies, MDPI, vol. 17(16), pages 1-30, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4070-:d:1457459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kecen Li & Jie Chen & Xueqin Tian & Yujing He, 2022. "Study on the Performance of Variable Density Multilayer Insulation in Liquid Hydrogen Temperature Region," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    3. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    4. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    5. Zhang, Rufeng & Chen, Yan & Li, Zhengmao & Jiang, Tao & Li, Xue, 2024. "Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties," Applied Energy, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    2. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    3. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    4. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    5. Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
    6. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    7. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    8. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    9. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    11. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    12. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    14. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    15. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    16. Kondziella, Hendrik & Specht, Karl & Lerch, Philipp & Scheller, Fabian & Bruckner, Thomas, 2023. "The techno-economic potential of large-scale hydrogen storage in Germany for a climate-neutral energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Ganter, Alissa & Gabrielli, Paolo & Sansavini, Giovanni, 2024. "Near-term infrastructure rollout and investment strategies for net-zero hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    18. Wassermann, Timo & Muehlenbrock, Henry & Kenkel, Philipp & Zondervan, Edwin, 2022. "Supply chain optimization for electricity-based jet fuel: The case study Germany," Applied Energy, Elsevier, vol. 307(C).
    19. Wickham, David & Hawkes, Adam & Jalil-Vega, Francisca, 2022. "Hydrogen supply chain optimisation for the transport sector – Focus on hydrogen purity and purification requirements," Applied Energy, Elsevier, vol. 305(C).
    20. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4070-:d:1457459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.