IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014808.html
   My bibliography  Save this article

Optimal dispatching of an energy system with integrated compressed air energy storage and demand response

Author

Listed:
  • Yang, Dechang
  • Wang, Ming
  • Yang, Ruiqi
  • Zheng, Yingying
  • Pandzic, Hrvoje

Abstract

The integrated energy system is considered to be an important way to avoid energy supply risks by virtue of advantages in meeting diversified energy demand and improving energy utilization efficiency. Energy storage enables microgrid operators to respond to variability or loss of generation sources. In view of the difficulty of battery to fully improve the energy utilization efficiency and solve the problems of clean energy power large-scale consumption, and the difficulty of single demand response to significantly improve the operational reliability and economy of the integrated energy system, a rolling optimization planning framework and model of an integrated energy system considering compressed air energy storage and sliding time window-based electric and heating integrated response demand is proposed, which can obtain both optimal resource configuration and energy management strategy. The planning problem is to coordinate the output of various dispatching resources on the basis of satisfying the constraints, so as to minimize the total cost. Taking into account the uncertainty of wind power and photovoltaic output and the unplanned outage risk of the unit, a stochastic optimization model is constructed based on the probability density function of the risk variable, and finally the cost probability distribution is obtained. The results verify the universality of the planning model. The comparison of five different energy system configuration schemes and multiple time window length schemes verifies the validity and superiority of the model. The simulation results show that the integrated energy system scheme proposed by this planning model has better economy than the scheme without compressed air energy storage, and the operating cost decreases by 11.9% and the total cost decreases by 4.5%. In addition, the results show that through the introduction of demand response, the operating economy and flexibility of the integrated energy system are improved, and as the sliding window length increases, the total cost gradually decreases.

Suggested Citation

  • Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014808
    DOI: 10.1016/j.energy.2021.121232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    2. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Nian, Victor & Jindal, Gautam & Li, Hailong, 2019. "A feasibility study on integrating large-scale battery energy storage systems with combined cycle power generation – Setting the bottom line," Energy, Elsevier, vol. 185(C), pages 396-408.
    4. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    5. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    6. Zhang, Yachao & Le, Jian & Zheng, Feng & Zhang, Yi & Liu, Kaipei, 2019. "Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration," Renewable Energy, Elsevier, vol. 135(C), pages 122-135.
    7. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    8. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    9. Kim, Min Jae & Kim, Tong Seop, 2019. "Integration of compressed air energy storage and gas turbine to improve the ramp rate," Applied Energy, Elsevier, vol. 247(C), pages 363-373.
    10. Howlader, Harun Or Rashid & Matayoshi, Hidehito & Senjyu, Tomonobu, 2016. "Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid," Renewable Energy, Elsevier, vol. 99(C), pages 107-117.
    11. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    12. Sanjari, M.J. & Karami, H., 2020. "Optimal control strategy of battery-integrated energy system considering load demand uncertainty," Energy, Elsevier, vol. 210(C).
    13. Liu, Wenxia & Huang, Yuchen & Li, Zhengzhou & Yang, Yue & Yi, Fang, 2020. "Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response," Energy, Elsevier, vol. 198(C).
    14. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    15. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    16. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    2. Ding, Yixing & Xu, Qingshan & Hao, Lili & Xia, Yuanxing, 2023. "A Stackelberg Game-based robust optimization for user-side energy storage configuration and power pricing," Energy, Elsevier, vol. 283(C).
    3. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    4. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    5. Gejirifu De & Xinlei Wang & Xueqin Tian & Tong Xu & Zhongfu Tan, 2022. "A Collaborative Optimization Model for Integrated Energy System Considering Multi-Load Demand Response," Energies, MDPI, vol. 15(6), pages 1-26, March.
    6. Tiannan Ma & Lilin Peng & Gang Wu & Danhao Chen & Xin Zou, 2024. "Optimized Operation of Integrated Cooling-Electricity-Heat Energy Systems with AA-CAES and Integrated Demand Response," Energies, MDPI, vol. 17(23), pages 1-21, November.
    7. Cao, Jinye & Yang, Dechang & Dehghanian, Payman, 2024. "Cooperative operation for multiple virtual power plants considering energy-carbon trading: A Nash bargaining model," Energy, Elsevier, vol. 307(C).
    8. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    9. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    10. József Magyari & Krisztina Hegedüs & Botond Sinóros-Szabó, 2022. "Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-19, September.
    11. Zhuochao Wu & Weixing Qian & Zhenya Ji, 2022. "A Demand Response Transaction Method for Integrated Energy Systems with a Trigonometric Membership Function-Based Uncertainty Model of Costumers’ Responsive Behaviors," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    12. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    13. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    14. Li, Xu & Deng, Jianhua & Liu, Jichun, 2024. "A two-layer and three-stage dynamic demand response game model considering the out of sync response for gases generators," Renewable Energy, Elsevier, vol. 228(C).
    15. Takele Ferede Agajie & Armand Fopah-Lele & Ahmed Ali & Isaac Amoussou & Baseem Khan & Mahmoud Elsisi & Wirnkar Basil Nsanyuy & Om Prakash Mahela & Roberto Marcelo Álvarez & Emmanuel Tanyi, 2023. "Integration of Superconducting Magnetic Energy Storage for Fast-Response Storage in a Hybrid Solar PV-Biogas with Pumped-Hydro Energy Storage Power Plant," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    16. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    17. Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
    18. He, Shuaijia & Gao, Hongjun & Liu, Junyong & Zhang, Xi & Chen, Zhe, 2022. "Distribution system planning considering peak shaving of energy station," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    2. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Bao, Minglei & Hui, Hengyu & Ding, Yi & Sun, Xiaocong & Zheng, Chenghang & Gao, Xiang, 2023. "An efficient framework for exploiting operational flexibility of load energy hubs in risk management of integrated electricity-gas systems," Applied Energy, Elsevier, vol. 338(C).
    4. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    5. Fu, Hailun & He, Qing & Song, Jintao & Shi, Xinping & Hao, Yinping & Du, Dongmei & Liu, Wenyi, 2021. "Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic rankine cycle," Energy, Elsevier, vol. 227(C).
    6. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    7. Yang, Lichao & Cai, Zuansi & Li, Cai & He, Qingcheng & Ma, Yan & Guo, Chaobin, 2020. "Numerical investigation of cycle performance in compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 269(C).
    8. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    10. Wu, Min & Xu, Jiazhu & Shi, Zhenglu, 2023. "Low carbon economic dispatch of integrated energy system considering extended electric heating demand response," Energy, Elsevier, vol. 278(PA).
    11. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    12. Chen, Changming & Wu, Xueyan & Li, Yan & Zhu, Xiaojun & Li, Zesen & Ma, Jien & Qiu, Weiqiang & Liu, Chang & Lin, Zhenzhi & Yang, Li & Wang, Qin & Ding, Yi, 2021. "Distributionally robust day-ahead scheduling of park-level integrated energy system considering generalized energy storages," Applied Energy, Elsevier, vol. 302(C).
    13. Ma, Ning & Fan, Lurong, 2023. "Double recovery strategy of carbon for coal-to-power based on a multi-energy system with tradable green certificates," Energy, Elsevier, vol. 273(C).
    14. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Cui, Shuangshuang & Song, Jintao & Wang, Tingting & Liu, Yixue & He, Qing & Liu, Wenyi, 2021. "Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system," Energy, Elsevier, vol. 235(C).
    16. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    17. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    18. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    19. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
    20. Du, Ruxue & He, Yang & Chen, Haisheng & Xu, Yujie & Li, Wen & Deng, Jianqiang, 2022. "Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.