IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4514-d1474108.html
   My bibliography  Save this article

Technology for Green Hydrogen Production: Desk Analysis

Author

Listed:
  • Bożena Łosiewicz

    (Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland)

Abstract

The use of green hydrogen as a high-energy fuel of the future may be an opportunity to balance the unstable energy system, which still relies on renewable energy sources. This work is a comprehensive review of recent advancements in green hydrogen production. This review outlines the current energy consumption trends. It presents the tasks and challenges of the hydrogen economy towards green hydrogen, including production, purification, transportation, storage, and conversion into electricity. This work presents the main types of water electrolyzers: alkaline electrolyzers, proton exchange membrane electrolyzers, solid oxide electrolyzers, and anion exchange membrane electrolyzers. Despite the higher production costs of green hydrogen compared to grey hydrogen, this review suggests that as renewable energy technologies become cheaper and more efficient, the cost of green hydrogen is expected to decrease. The review highlights the need for cost-effective and efficient electrode materials for large-scale applications. It concludes by comparing the operating parameters and cost considerations of the different electrolyzer technologies. It sets targets for 2050 to improve the efficiency, durability, and scalability of electrolyzers. The review underscores the importance of ongoing research and development to address the limitations of current electrolyzer technology and to make green hydrogen production more competitive with fossil fuels.

Suggested Citation

  • Bożena Łosiewicz, 2024. "Technology for Green Hydrogen Production: Desk Analysis," Energies, MDPI, vol. 17(17), pages 1-41, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4514-:d:1474108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4514/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4514/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sriram Srinivas & Shankar Raman Dhanushkodi & Ramesh Kumar Chidambaram & Dorota Skrzyniowska & Anna Korzen & Jan Taler, 2023. "Benchmarking Electrolytes for the Solid Oxide Electrolyzer Using a Finite Element Model," Energies, MDPI, vol. 16(18), pages 1-15, September.
    2. Hyun Kyu Shin & Sung Kyu Ha, 2023. "A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles," Energies, MDPI, vol. 16(13), pages 1-36, July.
    3. Jingyu Wang & Zongxin Liu & Changfa Ji & Lang Liu, 2023. "Heat Transfer and Reaction Characteristics of Steam Methane Reforming in a Novel Composite Packed Bed Microreactor for Distributed Hydrogen Production," Energies, MDPI, vol. 16(11), pages 1-14, May.
    4. Mariana Pimenta Alves & Waseem Gul & Carlos Alberto Cimini Junior & Sung Kyu Ha, 2022. "A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector," Energies, MDPI, vol. 15(14), pages 1-32, July.
    5. Heeyeon Lee & Sanghun Lee, 2022. "Economic Analysis on Hydrogen Pipeline Infrastructure Establishment Scenarios: Case Study of South Korea," Energies, MDPI, vol. 15(18), pages 1-13, September.
    6. Mohsen Fallah Vostakola & Hasan Ozcan & Rami S. El-Emam & Bahman Amini Horri, 2023. "Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production," Energies, MDPI, vol. 16(8), pages 1-50, April.
    7. Jonas Bollmann & Sudhagar Pitchaimuthu & Moritz F. Kühnel, 2023. "Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies," Energies, MDPI, vol. 16(8), pages 1-13, April.
    8. Frank Gambou & Damien Guilbert & Michel Zasadzinski & Hugues Rafaralahy, 2022. "A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity," Energies, MDPI, vol. 15(9), pages 1-20, May.
    9. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    10. Zhang, Rufeng & Chen, Yan & Li, Zhengmao & Jiang, Tao & Li, Xue, 2024. "Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties," Applied Energy, Elsevier, vol. 371(C).
    11. Alexandro Andrade & Anderson D’Oliveira & Loiane Cristina De Souza & Ana Cecilia Rosatelli de Freitas Bastos & Fábio Hech Dominski & Luca Stabile & Giorgio Buonanno, 2023. "Effects of Air Pollution on the Health of Older Adults during Physical Activities: Mapping Review," IJERPH, MDPI, vol. 20(4), pages 1-41, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Zhironkin & Fares Abu-Abed, 2024. "Fossil Fuel Prospects in the Energy of the Future (Energy 5.0): A Review," Energies, MDPI, vol. 17(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Tatarewicz & Sławomir Skwierz & Michał Lewarski & Robert Jeszke & Maciej Pyrka & Monika Sekuła, 2023. "Mapping the Future of Green Hydrogen: Integrated Analysis of Poland and the EU’s Development Pathways to 2050," Energies, MDPI, vol. 16(17), pages 1-27, August.
    2. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    3. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    4. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    5. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    6. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    7. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    8. Wu, Chenxi & Zhu, Qunzhi & Dou, Binlin & Fu, Zaiguo & Wang, Jikai & Mao, Siqi, 2024. "Thermodynamic analysis of a solid oxide electrolysis cell system in thermoneutral mode integrated with industrial waste heat for hydrogen production," Energy, Elsevier, vol. 301(C).
    9. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    10. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    11. Enrique Saborit & Eduardo García-Rosales Vazquez & M. Dolores Storch de Gracia Calvo & Gema María Rodado Nieto & Pablo Martínez Fondón & Alberto Abánades, 2023. "Alternatives for Transport, Storage in Port and Bunkering Systems for Offshore Energy to Green Hydrogen," Energies, MDPI, vol. 16(22), pages 1-12, November.
    12. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    13. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.
    14. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    15. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    16. Simona Di Fraia & Rafał Figaj & Musannif Shah & Laura Vanoli, 2024. "Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production," Energies, MDPI, vol. 17(21), pages 1-24, November.
    17. Cristina Hora & Florin Ciprian Dan & Dinu-Calin Secui & Horea Nicolae Hora, 2024. "Systematic Literature Review on Pipeline Transport Losses of Hydrogen, Methane, and Their Mixture, Hythane," Energies, MDPI, vol. 17(18), pages 1-22, September.
    18. Osama Alsamrai & Maria Dolores Redel-Macias & Sara Pinzi & M. P. Dorado, 2024. "A Systematic Review for Indoor and Outdoor Air Pollution Monitoring Systems Based on Internet of Things," Sustainability, MDPI, vol. 16(11), pages 1-21, May.
    19. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    20. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4514-:d:1474108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.