IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4073-d1457571.html
   My bibliography  Save this article

Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis

Author

Listed:
  • Kasin Ransikarbum

    (Department of Industrial Engineering, Ubonratchathani University, Ubonratchathani 34190, Thailand)

  • Hartmut Zadek

    (Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany)

  • Jettarat Janmontree

    (Institute of Logistics and Material Handling Systems, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany)

Abstract

Green hydrogen can be generated through electrolysis using electricity from renewable sources, such as wind and solar, to split water into hydrogen. This study evaluates the green hydrogen supply chain (GHSC) upstream process using the two-phase integrated multi-criteria decision analysis (MCDA) framework. In the first phase, the data envelopment analysis (DEA) technique is applied to measure the relative efficiency of provincial alternatives with multiple criteria. The input criteria include provincial area, population density, gross domestic product value, and land cost data. In contrast, the sustainability-based governmental criteria concerning people, prosperity, planet, peace, and partnership indices are used as output criteria. Then, the technique for order of preference by similarity to ideal Solution (TOPSIS) is further applied to evaluate regional districts for Ubonratchathani province, one of the twelve relatively efficient provinces, to obtain the ranking list of potential renewable energy sites in the GHSC. Criteria related to geographic and climate data relevant to the efficiency of solar and wind are, thus, collected and analyzed. Our results show that the top three district areas are Kut Khaopun District, Pho Sai District, and Na Tan District, respectively. Finally, the obtained results are verified to evaluate the robustness of the assessment. Our results offer a strategic and practical analysis for policymakers involved in the energy site appraisal process.

Suggested Citation

  • Kasin Ransikarbum & Hartmut Zadek & Jettarat Janmontree, 2024. "Evaluating Renewable Energy Sites in the Green Hydrogen Supply Chain with Integrated Multi-Criteria Decision Analysis," Energies, MDPI, vol. 17(16), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4073-:d:1457571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kasin Ransikarbum & Wattana Chanthakhot & Tony Glimm & Jettarat Janmontree, 2023. "Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool," Resources, MDPI, vol. 12(4), pages 1-22, April.
    2. Uchman, Wojciech & Kotowicz, Janusz & Sekret, Robert, 2022. "Investigation on green hydrogen generation devices dedicated for integrated renewable energy farm: Solar and wind," Applied Energy, Elsevier, vol. 328(C).
    3. Zhang, Rufeng & Chen, Yan & Li, Zhengmao & Jiang, Tao & Li, Xue, 2024. "Two-stage robust operation of electricity-gas-heat integrated multi-energy microgrids considering heterogeneous uncertainties," Applied Energy, Elsevier, vol. 371(C).
    4. Liu, Jia & Zhou, Yuekuan & Yang, Hongxing & Wu, Huijun, 2022. "Net-zero energy management and optimization of commercial building sectors with hybrid renewable energy systems integrated with energy storage of pumped hydro and hydrogen taxis," Applied Energy, Elsevier, vol. 321(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mujammil Asdhiyoga Rahmanta & Rahmat Adiprasetya Al Hasibi & Handrea Bernando Tambunan & Ruly & Agussalim Syamsuddin & Indra Ardhanayudha Aditya & Benny Susanto, 2024. "Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant," Energies, MDPI, vol. 17(8), pages 1-22, April.
    2. Fabio Massaro & Maria Luisa Di Silvestre & Marco Ferraro & Francesco Montana & Eleonora Riva Sanseverino & Salvatore Ruffino, 2024. "Energy Hub Model for the Massive Adoption of Hydrogen in Power Systems," Energies, MDPI, vol. 17(17), pages 1-31, September.
    3. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    4. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
    5. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    6. Shin, Dong-Youn & Shin, Woo-Gyun & Hwang, Hye-Mi & Kang, Gi-Hwan, 2023. "Grid-type LED media façade with reflective walls for building-integrated photovoltaics with virtually no shading loss," Applied Energy, Elsevier, vol. 332(C).
    7. Yinguo Yang & Ying Yang & Qiuyu Lu & Dexu Liu & Pingping Xie & Mu Wang & Zhenfan Yu & Yang Liu, 2024. "Comprehensive Evaluation of a Pumped Storage Operation Effect Considering Multidimensional Benefits of a New Power System," Energies, MDPI, vol. 17(17), pages 1-16, September.
    8. Xu Guo & Yang Li & Feng Wu & Linjun Shi & Yuzhe Chen & Hailun Wang, 2024. "Optimal Battery Storage Configuration for High-Proportion Renewable Power Systems Considering Minimum Inertia Requirements," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    9. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    10. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    12. Özdemir, Samed & Yavuzdoğan, Ahmet & Bilgilioğlu, Burhan Baha & Akbulut, Zeynep, 2023. "SPAN: An open-source plugin for photovoltaic potential estimation of individual roof segments using point cloud data," Renewable Energy, Elsevier, vol. 216(C).
    13. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    14. Jin-Li Hu & Min-Yueh Chuang, 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy," Energies, MDPI, vol. 16(17), pages 1-16, August.
    15. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    16. Eleftherios Thalassinos & Kesra Nermend & Anna Borawska, 2023. "Editorial Note: Decision Making in Resource Management: Exploring Problems, Methods, and Tools," Resources, MDPI, vol. 12(9), pages 1-3, September.
    17. Jinhwa Jeong & Dongkyu Lee & Young Tae Chae, 2023. "A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service," Energies, MDPI, vol. 16(22), pages 1-21, November.
    18. Mingguang Zhang & Shuai Yu & Hongyi Li, 2023. "Inter-Zone Optimal Scheduling of Rural Wind–Biomass-Hydrogen Integrated Energy System," Energies, MDPI, vol. 16(17), pages 1-15, August.
    19. Joo, Chonghyo & Lee, Jaewon & Kim, Yurim & Cho, Hyungtae & Gu, Boram & Kim, Junghwan, 2024. "A novel on-site SMR process integrated with a hollow fiber membrane module for efficient blue hydrogen production: Modeling, validation, and techno-economic analysis," Applied Energy, Elsevier, vol. 354(PB).
    20. Kumar, Anil & Luthra, Sunil & Mangla, Sachin Kumar & Garza-Reyes, Jose Arturo & Kazancoglu, Yigit, 2023. "Analysing the adoption barriers of low-carbon operations: A step forward for achieving net-zero emissions," Resources Policy, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4073-:d:1457571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.