IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp236-243.html
   My bibliography  Save this article

Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece

Author

Listed:
  • Gaglia, Athina G.
  • Lykoudis, Spyros
  • Argiriou, Athanassios A.
  • Balaras, Constantinos A.
  • Dialynas, Evangelos

Abstract

The standard efficiency of photovoltaics (PV) often deviates from the one achieved under real outdoor conditions. This paper presents relevant data collected using a small multi-crystalline photovoltaic array at an outdoor experimental facility located north of Athens. Measurements during summer and winter periods were used to quantify the PV performance and operating characteristics. Several correlations are provided in order to facilitate the estimation of the actual PV performance with readily available local parameters (e.g. ambient air temperature, wind speed). The PV efficiency was found to be about 18% lower than that under laboratory standard test conditions, under similar operating conditions. The mean annual PV efficiency was 8.7%.

Suggested Citation

  • Gaglia, Athina G. & Lykoudis, Spyros & Argiriou, Athanassios A. & Balaras, Constantinos A. & Dialynas, Evangelos, 2017. "Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece," Renewable Energy, Elsevier, vol. 101(C), pages 236-243.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:236-243
    DOI: 10.1016/j.renene.2016.08.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116307522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.08.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paulescu, Marius & Badescu, Viorel & Dughir, Ciprian, 2014. "New procedure and field-tests to assess photovoltaic module performance," Energy, Elsevier, vol. 70(C), pages 49-57.
    2. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    3. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    4. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    5. Kaldellis, John K. & Kapsali, Marina & Kavadias, Kosmas A., 2014. "Temperature and wind speed impact on the efficiency of PV installations. Experience obtained from outdoor measurements in Greece," Renewable Energy, Elsevier, vol. 66(C), pages 612-624.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Savvakis, Nikolaos & Tsoutsos, Theocharis, 2015. "Performance assessment of a thin film photovoltaic system under actual Mediterranean climate conditions in the island of Crete," Energy, Elsevier, vol. 90(P2), pages 1435-1455.
    2. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    3. Santiago, I. & Trillo-Montero, D. & Moreno-Garcia, I.M. & Pallarés-López, V. & Luna-Rodríguez, J.J., 2018. "Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 70-89.
    4. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    5. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    6. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    7. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    8. Ali Kareem Abdulrazzaq & Balázs Plesz & György Bognár, 2020. "A Novel Method for Thermal Modelling of Photovoltaic Modules/Cells under Varying Environmental Conditions," Energies, MDPI, vol. 13(13), pages 1-23, June.
    9. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    10. Pantic, Lana S. & Pavlović, Tomislav M. & Milosavljević, Dragana D. & Radonjic, Ivana S. & Radovic, Miodrag K. & Sazhko, Galina, 2016. "The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia," Energy, Elsevier, vol. 109(C), pages 38-48.
    11. Lau, K.Y. & Tan, C.W. & Yatim, A.H.M., 2018. "Effects of ambient temperatures, tilt angles, and orientations on hybrid photovoltaic/diesel systems under equatorial climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2625-2636.
    12. Khalid, Maria & Shanks, Katie & Ghosh, Aritra & Tahir, Asif & Sundaram, Senthilarasu & Mallick, Tapas Kumar, 2021. "Temperature regulation of concentrating photovoltaic window using argon gas and polymer dispersed liquid crystal films," Renewable Energy, Elsevier, vol. 164(C), pages 96-108.
    13. Dengchang Ma & Guobing Pan & Fang Xu & Hongfei Sun, 2021. "Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System Feasibility," Energies, MDPI, vol. 14(10), pages 1-16, May.
    14. Paulescu, Marius & Badescu, Viorel & Dughir, Ciprian, 2014. "New procedure and field-tests to assess photovoltaic module performance," Energy, Elsevier, vol. 70(C), pages 49-57.
    15. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    16. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.
    17. Ahmad Hasan & Hamza Alnoman & Ali Hasan Shah, 2016. "Energy Efficiency Enhancement of Photovoltaics by Phase Change Materials through Thermal Energy Recovery," Energies, MDPI, vol. 9(10), pages 1-15, September.
    18. Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
    19. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    20. Boccalatte, Alessia & Thebault, Martin & Paolini, Riccardo & Fossa, Marco & Ramousse, Julien & Ménézo, Christophe & Santamouris, Mattheos, 2023. "Assessing the combined effects of local climate and mounting configuration on the electrical and thermal performance of photovoltaic systems. Application to the greater Sydney area," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:236-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.