IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7134-d1262269.html
   My bibliography  Save this article

Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture

Author

Listed:
  • Xiao Li

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lingzhi Yang

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yong Hao

    (Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Methanol is a prospective hydrogen storage medium that holds the potential to address the challenges of hydrogen storage and transportation. However, hydrogen production via methanol steam reforming faces several key obstacles, including high reaction temperature (e.g., 250–300 °C) and low methanol conversion (at <200 °C), while the purification procedure of hydrogen is commonly required to obtain high-purity H 2 . A novel method of H 2 absorption-enhanced steam reforming of methanol is proposed to overcome the challenges mentioned above. The method involves the absorption and separation of H 2 using an absorbent to facilitate the forward shift of the reaction equilibrium and enhance reaction performance. A thermodynamic analysis using the equilibrium constant method presents that the separation of H 2 can improve the methanol conversion rate and the total H 2 yield. The feasibility of the method is validated through experiments in a fixed-bed reactor (4 mm diameter, 194 mm length) under the conditions of 200 °C and 1 bar. In the experiments, 1 g of bulk catalyst (CuO/ZnO/Al 2 O 3 ) and 150 g of bulk hydrogen absorbent (Aluminum-doped lanthanum penta-nickel alloy, LaNi 4.3 Al 0.7 alloy) are sequentially loaded into the reactor. As a proof of concept, a CO 2 concentration of 84.10% is obtained in the reaction step of the first cycle, and a gas stream with an H 2 concentration of 81.66% is obtained in the corresponding regeneration step. A plug flow reactor model considering the kinetics is developed to analyze the effects of the number of cycles and H 2 separation ratio on the enhancement performance. The method indicates a high potential for commercialization given its low reaction temperature, high-purity H 2 , and membrane-free design.

Suggested Citation

  • Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7134-:d:1262269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yidian & Guo, Shaopeng & Tian, Zhenyu & Zhao, Yawen & Hao, Yong, 2019. "Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts," Applied Energy, Elsevier, vol. 254(C).
    2. Moon, Dong-Kyu & Lee, Dong-Geun & Lee, Chang-Ha, 2016. "H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process," Applied Energy, Elsevier, vol. 183(C), pages 760-774.
    3. Ribeirinha, P. & Abdollahzadeh, M. & Boaventura, M. & Mendes, A., 2017. "H2 production with low carbon content via MSR in packed bed membrane reactors for high-temperature polymeric electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 409-419.
    4. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiu, Wei-Cheng & Hou, Shuhn-Shyurng & Chen, Chen-Yu & Lai, Wei-Hsiang & Horng, Rong-Fang, 2022. "Hydrogen-rich gas with low-level CO produced with autothermal methanol reforming providing a real-time supply used to drive a kW-scale PEMFC system," Energy, Elsevier, vol. 239(PC).
    2. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
    3. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    4. Wang, Chao & Liao, Mingzheng & Jiang, Zhiqiang & Liang, Bo & Weng, Jiahong & Song, Qingbin & Zhao, Ming & Chen, Ying & Lei, Libin, 2022. "Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications," Energy, Elsevier, vol. 247(C).
    5. Bai, Xiao-Shuai & Rong, Long & Yang, Wei-Wei & Yang, Fu-Sheng, 2023. "Effective thermal conductivity of metal hydride particle bed: Theoretical model and experimental validation," Energy, Elsevier, vol. 271(C).
    6. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    7. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    8. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    9. Pan, Xin & Xiong, Yuefei & Wang, Cong & Qin, Jiang & Zhang, Silong & Bao, Wen, 2022. "Performance analysis of precooled turbojet engine with a low-temperature endothermic fuel," Energy, Elsevier, vol. 248(C).
    10. Fajín, José L.C. & Cordeiro, M. Natália D.S., 2021. "Light alcohols reforming towards renewable hydrogen production on multicomponent catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Slavomír Podolský & Miroslav Variny & Tomáš Kurák, 2023. "Carbon-Energy Impact Analysis of Heavy Residue Gasification Plant Integration into Oil Refinery," Resources, MDPI, vol. 12(6), pages 1-23, May.
    12. Subraveti, Sai Gokul & Pai, Kasturi Nagesh & Rajagopalan, Ashwin Kumar & Wilkins, Nicholas Stiles & Rajendran, Arvind & Jayaraman, Ambalavan & Alptekin, Gokhan, 2019. "Cycle design and optimization of pressure swing adsorption cycles for pre-combustion CO2 capture," Applied Energy, Elsevier, vol. 254(C).
    13. Shen, Qiuwan & Shao, Zicheng & Li, Shian & Yang, Guogang & Sunden, Bengt, 2023. "Effects of B-site Al doping on microstructure characteristics and hydrogen production performance of novel LaNixAl1-xO3-δ perovskite in methanol steam reforming," Energy, Elsevier, vol. 268(C).
    14. Guo, Fafu & Li, Chengjie & Liu, He & Cheng, Kunlin & Qin, Jiang, 2023. "Matching and performance analysis of a solid oxide fuel cell turbine-less hybrid electric propulsion system on aircraft," Energy, Elsevier, vol. 263(PA).
    15. Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
    16. Ribeirinha, P. & Abdollahzadeh, M. & Sousa, J.M. & Boaventura, M. & Mendes, A., 2017. "Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell," Applied Energy, Elsevier, vol. 202(C), pages 6-19.
    17. Wu, Wei & Chuang, Bo-Neng & Hwang, Jenn-Jiang & Lin, Chien-Kung & Yang, Shu-Bo, 2019. "Techno-economic evaluation of a hybrid fuel cell vehicle with on-board MeOH-to-H2 processor," Applied Energy, Elsevier, vol. 238(C), pages 401-412.
    18. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
    19. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Catalyst-scale investigation of polydispersity effect on thermophysical properties in a commercial-scale catalytic MTO fluidized bed reactor," Energy, Elsevier, vol. 262(PA).
    20. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7134-:d:1262269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.