IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i8d10.1038_s41560-021-00867-w.html
   My bibliography  Save this article

Greenhouse-inspired supra-photothermal CO2 catalysis

Author

Listed:
  • Mujin Cai

    (Soochow University)

  • Zhiyi Wu

    (Soochow University)

  • Zhao Li

    (Soochow University
    University of Toronto)

  • Lu Wang

    (The Chinese University of Hong Kong)

  • Wei Sun

    (University of Toronto)

  • Athanasios A. Tountas

    (University of Toronto)

  • Chaoran Li

    (Soochow University)

  • Shenghua Wang

    (Soochow University)

  • Kai Feng

    (Soochow University)

  • Ao-Bo Xu

    (University of Western Ontario)

  • Sanli Tang

    (University of Toronto)

  • Alexandra Tavasoli

    (University of Toronto)

  • Meiwen Peng

    (Soochow University)

  • Wenxuan Liu

    (Soochow University)

  • Amr S. Helmy

    (University of Toronto)

  • Le He

    (Soochow University)

  • Geoffrey A. Ozin

    (University of Toronto)

  • Xiaohong Zhang

    (Soochow University)

Abstract

Converting carbon dioxide photocatalytically into fuels using solar energy is an attractive route to move away from a reliance on fossil fuels. Photothermal CO2 catalysis is one approach to achieve this, but improved materials that can more efficiently harvest and use solar energy are needed. Here, we report a supra-photothermal catalyst architecture—inspired by the greenhouse effect—that boosts the performance of a catalyst for CO2 hydrogenation compared to traditional photothermal catalyst designs. The catalyst consists of a nanoporous-silica-encapsulated nickel nanocrystal (Ni@p-SiO2), which is active for methanation and reverse water–gas shift reactions. Under illumination, the local temperatures achieved by Ni@p-SiO2 exceed those of Ni-based catalysts without the SiO2 shell. We suggest that the heat insulation and infrared shielding effects of the SiO2 sheath confine the photothermal energy of the nickel core, enabling a supra-photothermal effect. Catalyst sintering and coking is also lessened in Ni@p-SiO2, which may be due to spatial confinement effects.

Suggested Citation

  • Mujin Cai & Zhiyi Wu & Zhao Li & Lu Wang & Wei Sun & Athanasios A. Tountas & Chaoran Li & Shenghua Wang & Kai Feng & Ao-Bo Xu & Sanli Tang & Alexandra Tavasoli & Meiwen Peng & Wenxuan Liu & Amr S. Hel, 2021. "Greenhouse-inspired supra-photothermal CO2 catalysis," Nature Energy, Nature, vol. 6(8), pages 807-814, August.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:8:d:10.1038_s41560-021-00867-w
    DOI: 10.1038/s41560-021-00867-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00867-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00867-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Jin & Feng, Youneng & Li, Chun & Yuan, Zhaoran & Shang, Ruihang & Yuan, Shenfu, 2024. "Highly efficiency H2 production for real coal tar steam reforming over Ni-ca/H-Al catalyst: Effects of oxygen vacancy, CaO doping and synthesis methods," Applied Energy, Elsevier, vol. 367(C).
    2. Xiaodong Li & Li Li & Xingyuan Chu & Xiaohui Liu & Guangbo Chen & Quanquan Guo & Zhen Zhang & Mingchao Wang & Shuming Wang & Alexander Tahn & Yongfu Sun & Xinliang Feng, 2024. "Photothermal CO2 conversion to ethanol through photothermal heterojunction-nanosheet arrays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Yue Li & Xingwu Liu & Tong Wu & Xiangzhou Zhang & Hecheng Han & Xiaoyu Liu & Yuke Chen & Zhenfei Tang & Zhen Liu & Yuhai Zhang & Hong Liu & Lili Zhao & Ding Ma & Weijia Zhou, 2024. "Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yaguang Li & Xianhua Bai & Dachao Yuan & Chenyang Yu & Xingyuan San & Yunna Guo & Liqiang Zhang & Jinhua Ye, 2023. "Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Zhengwei Yang & Zhen-Yu Wu & Zhexing Lin & Tianji Liu & Liping Ding & Wenbo Zhai & Zipeng Chen & Yi Jiang & Jinlei Li & Siyun Ren & Zhenhui Lin & Wangxi Liu & Jianyong Feng & Xing Zhang & Wei Li & Yi , 2024. "Optically selective catalyst design with minimized thermal emission for facilitating photothermal catalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yingxuan Miao & Yunxuan Zhao & Geoffrey I. N. Waterhouse & Run Shi & Li-Zhu Wu & Tierui Zhang, 2023. "Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Yuqi Ren & Yiwei Fu & Naixu Li & Changjun You & Jie Huang & Kai Huang & Zhenkun Sun & Jiancheng Zhou & Yitao Si & Yuanhao Zhu & Wenshuai Chen & Lunbo Duan & Maochang Liu, 2024. "Concentrated solar CO2 reduction in H2O vapour with >1% energy conversion efficiency," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Guo, Yang & Li, Tengfei & Li, Dan & Cheng, Jiahui, 2024. "Efficient reduction of CO2 to high value-added compounds via photo-thermal catalysis: Mechanisms, catalysts and apparatuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:8:d:10.1038_s41560-021-00867-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.