IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924002010.html
   My bibliography  Save this article

Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics

Author

Listed:
  • Li, Xudong
  • Yang, Weijia
  • Liao, Yiwen
  • Zhang, Shushu
  • Zheng, Yang
  • Zhao, Zhigao
  • Tang, Maojia
  • Cheng, Yongguang
  • Liu, Pan

Abstract

Francis-type hydropower units operating in part-load region could lead to adverse effects such as decreased turbine efficiency and increased pressure pulsation amplitude. Nowadays, this type of hydropower units is frequently forced to operate in the part-load region due to their complementary operation with uncertain wind and solar power. This poses potential risk to hydro-wind-solar hybrid energy system (HWSHES). However, existing studies have not adequately addressed the risk of hydropower unit operating in part-load region and misestimate the ideal flexible operating range of units. To address the two issues, this work proposes a risk-management model for HWSHES considering the hydropower part-load operating characteristics, which is based on the framework of “risk recognition-evaluation-control”: (1) Risk recognition: identify and quantify potential operation risk of both power source and power grid in HWSHES; and (2) Risk evaluation: build a tri-objective short-term simulation scheduling model to evaluate power sources-power grid risks; (3) Risk control: design a three-stage optimization method for solving the model and effectively controlling risk. A case study of Wudongde hydropower plant, a key project of China's West-to-East power transmission project, in the Jinsha River Basin shows that: (1) The proposed model quantitatively identifies units' part-load risk distribution; (2) The uncertainty of wind and solar is prone to cause the risk of both power shortage and part-load operating in spring and winter; (3) A trade-off between power generation and risk is consistently observed throughout each season; and (4) Implementing the risk-management measures reduces the average part-load operating risk by 57.1% compared with no risk-management. In conclusion, this work contributes to enhancing the risk-management capabilities of large-scale HWSHES.

Suggested Citation

  • Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002010
    DOI: 10.1016/j.apenergy.2024.122818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    2. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    3. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    4. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    5. David Valentín & Alexandre Presas & Eduard Egusquiza & Carme Valero & Mònica Egusquiza & Matias Bossio, 2017. "Power Swing Generated in Francis Turbines by Part Load and Overload Instabilities," Energies, MDPI, vol. 10(12), pages 1-17, December.
    6. Yuyama, Ayumi & Kajitani, Yoshio & Shoji, Gaku, 2018. "Simulation of operational reliability of thermal power plants during a power crisis: Are we underestimating power shortage risk?," Applied Energy, Elsevier, vol. 231(C), pages 901-913.
    7. Han, Shuo & He, Mengjiao & Zhao, Ziwen & Chen, Diyi & Xu, Beibei & Jurasz, Jakub & Liu, Fusheng & Zheng, Hongxi, 2023. "Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility," Applied Energy, Elsevier, vol. 333(C).
    8. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    9. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    10. Huang, Kangdi & Liu, Pan & Kim, Jong-Suk & Xu, Weifeng & Gong, Yu & Cheng, Qian & Zhou, Yong, 2023. "A model coupling current non-adjustable, coming adjustable and remaining stages for daily generation scheduling of a wind-solar-hydro complementary system," Energy, Elsevier, vol. 263(PB).
    11. Xiong, Hualin & Egusquiza, Mònica & Alberg Østergaard, Poul & Pérez-Díaz, Juan I. & Sun, Guoxiu & Egusquiza, Eduard & Patelli, Edoardo & Xu, Beibei & Duan, Hongjiang & Chen, Diyi & Luo, Xingqi, 2021. "Multi-objective optimization of a hydro-wind-photovoltaic power complementary plant with a vibration avoidance strategy," Applied Energy, Elsevier, vol. 301(C).
    12. Weijia Yang & Per Norrlund & Linn Saarinen & Adam Witt & Brennan Smith & Jiandong Yang & Urban Lundin, 2018. "Burden on hydropower units for short-term balancing of renewable power systems," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    13. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    14. Li, Xinchao & Lu, Shan & Li, Zhe & Wang, Yue & Zhu, Li, 2022. "Modeling and optimization of bioethanol production planning under hybrid uncertainty: A heuristic multi-stage stochastic programming approach," Energy, Elsevier, vol. 245(C).
    15. Tian, Yuyu & Chang, Jianxia & Wang, Yimin & Wang, Xuebin & Zhao, Mingzhe & Meng, Xuejiao & Guo, Aijun, 2022. "A method of short-term risk and economic dispatch of the hydro-thermal-wind-PV hybrid system considering spinning reserve requirements," Applied Energy, Elsevier, vol. 328(C).
    16. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    17. Kumar, Sandeep & Cervantes, Michel J. & Gandhi, Bhupendra K., 2021. "Rotating vortex rope formation and mitigation in draft tube of hydro turbines – A review from experimental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    18. Jia, Rui & He, Mengjiao & Zhang, Xinyu & Zhao, Ziwen & Han, Shuo & Jurasz, Jakub & Chen, Diyi & Xu, Beibei, 2022. "Optimal operation of cascade hydro-wind-photovoltaic complementary generation system with vibration avoidance strategy," Applied Energy, Elsevier, vol. 324(C).
    19. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.
    20. Yang, Yuqi & Zhou, Jianzhong & Liu, Guangbiao & Mo, Li & Wang, Yongqiang & Jia, Benjun & He, Feifei, 2020. "Multi-plan formulation of hydropower generation considering uncertainty of wind power," Applied Energy, Elsevier, vol. 260(C).
    21. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    22. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    23. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    24. Kun Yang & Kan Yang, 2022. "Improved Whale Algorithm for Economic Load Dispatch Problem in Hydropower Plants and Comprehensive Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5823-5838, December.
    25. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiehong Kong & Igor Iliev & Hans Ivar Skjelbred, 2024. "Including Lifetime Hydraulic Turbine Cost into Short-Term Hybrid Scheduling of Hydro and Solar," Energies, MDPI, vol. 17(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Qian & Liu, Pan & Feng, Maoyuan & Cheng, Lei & Ming, Bo & Luo, Xinran & Liu, Weibo & Xu, Weifeng & Huang, Kangdi & Xia, Jun, 2023. "Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency," Applied Energy, Elsevier, vol. 339(C).
    2. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    3. Jiang, Jianhua & Ming, Bo & Liu, Pan & Huang, Qiang & Guo, Yi & Chang, Jianxia & Zhang, Wei, 2023. "Refining long-term operation of large hydro–photovoltaic–wind hybrid systems by nesting response functions," Renewable Energy, Elsevier, vol. 204(C), pages 359-371.
    4. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    5. Wang, Zizhao & Li, Yang & Wu, Feng & Wu, Jiawei & Shi, Linjun & Lin, Keman, 2024. "Multi-objective day-ahead scheduling of cascade hydropower-photovoltaic complementary system with pumping installation," Energy, Elsevier, vol. 290(C).
    6. Tan, Qiaofeng & Zhang, Ziyi & Wen, Xin & Fang, Guohua & Xu, Shuo & Nie, Zhuang & Wang, Yanling, 2024. "Risk control of hydropower-photovoltaic multi-energy complementary scheduling based on energy storage allocation," Applied Energy, Elsevier, vol. 358(C).
    7. Lu, Na & Wang, Guangyan & Su, Chengguo & Ren, Zaimin & Peng, Xiaoyue & Sui, Quan, 2024. "Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties," Applied Energy, Elsevier, vol. 353(PA).
    8. Han, Shuo & Yuan, Yifan & He, Mengjiao & Zhao, Ziwen & Xu, Beibei & Chen, Diyi & Jurasz, Jakub, 2024. "A novel day-ahead scheduling model to unlock hydropower flexibility limited by vibration zones in hydropower-variable renewable energy hybrid system," Applied Energy, Elsevier, vol. 356(C).
    9. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    10. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    11. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    12. Cheng, Qian & Liu, Pan & Xia, Jun & Ming, Bo & Cheng, Lei & Chen, Jie & Xie, Kang & Liu, Zheyuan & Li, Xiao, 2022. "Contribution of complementary operation in adapting to climate change impacts on a large-scale wind–solar–hydro system: A case study in the Yalong River Basin, China," Applied Energy, Elsevier, vol. 325(C).
    13. He, Yaoyao & Hong, Xiaoyu & Wang, Chao & Qin, Hui, 2023. "Optimal capacity configuration of the hydro-wind-photovoltaic complementary system considering cascade reservoir connection," Applied Energy, Elsevier, vol. 352(C).
    14. Jiang, Jianhua & Ming, Bo & Huang, Qiang & Guo, Yi & Shang, Jia’nan & Jurasz, Jakub & Liu, Pan, 2023. "A holistic techno-economic evaluation framework for sizing renewable power plant in a hydro-based hybrid generation system," Applied Energy, Elsevier, vol. 348(C).
    15. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    16. Wang, Zizhao & Wu, Feng & Li, Yang & Shi, Linjun & Lee, Kwang Y. & Wu, Jiawei, 2023. "Itô-theory-based multi-time scale dispatch approach for cascade hydropower-photovoltaic complementary system," Renewable Energy, Elsevier, vol. 202(C), pages 127-142.
    17. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    18. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    19. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    20. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.