IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224017389.html
   My bibliography  Save this article

Optimizing cascade Hydropower-VRE hybrid systems: A novel approach addressing whole-process vibration to enhance operational safety

Author

Listed:
  • He, Mengjiao
  • Han, Shuo
  • Chen, Diyi
  • Zhao, Ziwen
  • Jurasz, Jakub
  • Mahmud, Md Apel
  • Liu, Pan
  • Deng, Mingjiang

Abstract

The large-scale variable renewable energy (VRE) forces hydropower to smooth out more frequent and violent load/supply fluctuations in cascade hydropower-VRE hybrid systems (CHVHS), threatening the hydropower units safety. This paper proposes a short-term optimization operation model, considering the vibration in both the stable operation and regulation process, which minimizes the whole-process vibration for a CHVHS. Particularly, the traversing depth (TD) is defined for the first time and combined with the traversing time to quantify the cost of traversing vibration zone (VZ), and a complete vibration avoidance strategy applicable to multiple VZs of multiple units is proposed. Finally, the cascade hydropower stations in Hongshui River Basin are selected as a case study. The validity and superiority of the model are verified by comparing with two conventional operation models from the hydropower station and unit perspectives under different load curves, hydrology, wind speed and solar intensity scenarios. The proposed model enables the hydropower unit not to operate in the VZ, and its TD is reduced by 54.28 % and 55.28 % compared to the two conventional models respectively. The approach provides a safe and stable operation pattern that considers whole-process vibration for a CHVHS, mitigating exacerbated vibration from hydropower units compensating for VRE uncertainty.

Suggested Citation

  • He, Mengjiao & Han, Shuo & Chen, Diyi & Zhao, Ziwen & Jurasz, Jakub & Mahmud, Md Apel & Liu, Pan & Deng, Mingjiang, 2024. "Optimizing cascade Hydropower-VRE hybrid systems: A novel approach addressing whole-process vibration to enhance operational safety," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017389
    DOI: 10.1016/j.energy.2024.131965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.