IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5951-d445161.html
   My bibliography  Save this article

Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review

Author

Listed:
  • Wei Li

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Hui Ren

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Ping Chen

    (Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China)

  • Yanyang Wang

    (Hebei Electric Power Trading Center Co., Ltd., Shijiazhuang 050011, China)

  • Hailong Qi

    (Hebei Minheng Electrical Technology Co., Ltd., Baoding 071000, China)

Abstract

Solar photovoltaic (PV) power generation has strong intermittency and volatility due to its high dependence on solar radiation and other meteorological factors. Therefore, the negative impact of grid-connected PV on power systems has become one of the constraints in the development of large scale PV systems. Accurate forecasting of solar power generation and flexible planning and operational measures are of great significance to ensure safe, stable, and economical operation of a system with high penetration of solar generation at transmission and distribution levels. In this paper, studies on the following aspects are reviewed: (1) this paper comprehensively expounds the research on forecasting techniques of PV power generation output. (2) In view of the new challenge brought by the integration of high proportion solar generation to the frequency stability of power grid, this paper analyzes the mechanisms of influence between them and introduces the current technical route of PV power generation participating in system frequency regulation. (3) This section reviews the feasible measures that facilitate the inter-regional and wide-area consumption of intermittent solar power generation. At the end of this paper, combined with the actual demand of the development of power grid and PV power generation, the problems that need further attention in the future are prospected.

Suggested Citation

  • Wei Li & Hui Ren & Ping Chen & Yanyang Wang & Hailong Qi, 2020. "Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review," Energies, MDPI, vol. 13(22), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5951-:d:445161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meral, Mehmet Emin & Dinçer, Furkan, 2011. "A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2176-2184, June.
    2. Gomes, I.L.R. & Pousinho, H.M.I. & Melício, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    3. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    4. Strzalka, Aneta & Alam, Nazmul & Duminil, Eric & Coors, Volker & Eicker, Ursula, 2012. "Large scale integration of photovoltaics in cities," Applied Energy, Elsevier, vol. 93(C), pages 413-421.
    5. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    6. Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
    7. Schmidt, Johannes & Cancella, Rafael & Pereira, Amaro O., 2016. "The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system," Energy, Elsevier, vol. 115(P3), pages 1748-1757.
    8. Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
    9. Weiliang Liu & Changliang Liu & Yongjun Lin & Liangyu Ma & Feng Xiong & Jintuo Li, 2018. "Ultra-Short-Term Forecast of Photovoltaic Output Power under Fog and Haze Weather," Energies, MDPI, vol. 11(3), pages 1-22, February.
    10. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    11. Panda, Ambarish & Tripathy, M. & Barisal, A.K. & Prakash, T., 2017. "A modified bacteria foraging based optimal power flow framework for Hydro-Thermal-Wind generation system in the presence of STATCOM," Energy, Elsevier, vol. 124(C), pages 720-740.
    12. Fei Mei & Yi Pan & Kedong Zhu & Jianyong Zheng, 2018. "A Hybrid Online Forecasting Model for Ultrashort-Term Photovoltaic Power Generation," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    13. Stefano Massucco & Gabriele Mosaico & Matteo Saviozzi & Federico Silvestro, 2019. "A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach," Energies, MDPI, vol. 12(7), pages 1-21, April.
    14. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    15. Sameer Al-Dahidi & Osama Ayadi & Jehad Adeeb & Mohammad Alrbai & Bashar R. Qawasmeh, 2018. "Extreme Learning Machines for Solar Photovoltaic Power Predictions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    16. Donghun Lee & Kwanho Kim, 2019. "Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information," Energies, MDPI, vol. 12(2), pages 1-22, January.
    17. Honglu Zhu & Xu Li & Qiao Sun & Ling Nie & Jianxi Yao & Gang Zhao, 2015. "A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks," Energies, MDPI, vol. 9(1), pages 1-15, December.
    18. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    19. Tao Yi & Ling Tong & Mohan Qiu & Jinpeng Liu, 2019. "Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China," Energies, MDPI, vol. 12(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sattar, Faisal & Ghosh, Sudipta & Isbeih, Younes J. & El Moursi, Mohamed Shawky & Al Durra, Ahmed & El Fouly, Tarek H.M., 2024. "A predictive tool for power system operators to ensure frequency stability for power grids with renewable energy integration," Applied Energy, Elsevier, vol. 353(PB).
    2. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    3. Shen, Yun & Mao, Yaqian & Weng, Jiacheng & Wu, Chenxi & Wu, Haixin & Gu, Yangyang & Wang, Jianhong, 2024. "A novel SARCIMA model based on central difference and its application in solar power generation of China," Applied Energy, Elsevier, vol. 360(C).
    4. Srivastava, Nitish & Saquib, Mohammad & Rajput, Pramod & Bhosale, Amit C. & Singh, Rhythm & Arora, Pratham, 2023. "Prospects of solar-powered nitrogenous fertilizers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    3. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    4. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    5. Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
    6. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    7. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    8. Grzegorz Dec & Grzegorz Drałus & Damian Mazur & Bogdan Kwiatkowski, 2021. "Forecasting Models of Daily Energy Generation by PV Panels Using Fuzzy Logic," Energies, MDPI, vol. 14(6), pages 1-16, March.
    9. Aleksandar Dimovski & Matteo Moncecchi & Davide Falabretti & Marco Merlo, 2020. "PV Forecast for the Optimal Operation of the Medium Voltage Distribution Network: A Real-Life Implementation on a Large Scale Pilot," Energies, MDPI, vol. 13(20), pages 1-21, October.
    10. Orest Lozynskyy & Damian Mazur & Yaroslav Marushchak & Bogdan Kwiatkowski & Andriy Lozynskyy & Tadeusz Kwater & Bohdan Kopchak & Przemysław Hawro & Lidiia Kasha & Robert Pękala & Robert Ziemba & Bogus, 2021. "Formation of Characteristic Polynomials on the Basis of Fractional Powers j of Dynamic Systems and Stability Problems of Such Systems," Energies, MDPI, vol. 14(21), pages 1-35, November.
    11. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Lee, Donghun & Kim, Kwanho, 2021. "PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information," Renewable Energy, Elsevier, vol. 173(C), pages 1098-1110.
    13. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    14. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    15. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    16. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    17. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    18. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    19. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    20. Honglu Zhu & Weiwei Lian & Lingxing Lu & Songyuan Dai & Yang Hu, 2017. "An Improved Forecasting Method for Photovoltaic Power Based on Adaptive BP Neural Network with a Scrolling Time Window," Energies, MDPI, vol. 10(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5951-:d:445161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.