IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224032079.html
   My bibliography  Save this article

A real-time phase transition modeling of supercritical steam cycle and load variation rate enhancement of thermal power plants under deep peak shaving

Author

Listed:
  • Ji, Weiming
  • Hong, Feng
  • Zhao, Yuzheng
  • Liang, Lu
  • Hao, Junhong
  • Fang, Fang
  • Liu, Jizhen

Abstract

The ambitious green revolution to renewable energy sources in global power grids necessitates massive integration of solar and wind energy, which involves intermittent and unpredictable challenges. Thermal power plants are crucial in stabilizing the grid and addressing these challenges through flexibility reformation including deep peak shaving and frequent load variations since the unsteady state energy transfer and thermal dynamics during combustion and heat transformation in thermodynamic processes vary significantly. These conditions lead to issues such as furnace instability and latent heat of phase transition. This study introduces a novel approach to modeling phase transitions of supercritical steam cycle, and investigatesthe length, position, temperature, and energy transfer of the working medium and components under normal and low operational states. Conducting and analyzing the thermal feasible region associating the security of components and working medium this study establishes a control strategy for dynamic heat transfer to reduce component degradation effects andenhance load variation rate under flexible operations. Simulation model of a supercritical power unit based on the proposed method demonstrates an accuracy of 97.94%. Results from the optimal approach in maximizing load variation rate show the effectiveness and achieve 1.2%p.e./min most under transition process.

Suggested Citation

  • Ji, Weiming & Hong, Feng & Zhao, Yuzheng & Liang, Lu & Hao, Junhong & Fang, Fang & Liu, Jizhen, 2024. "A real-time phase transition modeling of supercritical steam cycle and load variation rate enhancement of thermal power plants under deep peak shaving," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032079
    DOI: 10.1016/j.energy.2024.133431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.