IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923013284.html
   My bibliography  Save this article

Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates

Author

Listed:
  • Islam, Md. Zahidul
  • Lin, Yuzhang
  • Vokkarane, Vinod M.
  • Yu, Nanpeng

Abstract

With increasing renewable generation and demand response, the load profiles of distribution feeders become more fluctuating and uncertain, requiring real-time load estimation (RTLE) with high temporal granularity. Smart meters (SM) provide new data sources that have the potential to enable RTLE. However, it is cost prohibitive to communicate and process real-time high-resolution data from a massive number of SMs. To address the challenge, this paper proposes a novel solution to RTLE using High-Reporting-Rate SMs (HRRSMs) installed at a sparsely selected subset of customers in the feeder. The first step is to select customers for installing HRRSMs based on clustering, such that load profiles can best represent those of the others and the whole feeder. Then, a state-of-the-art Deep Learning (DL) model is trained to capture the relation between the historical load profiles of the selected customers and that of the feeder. Finally, real-time HRRSM data from the selective customers is fed to the trained model to perform RTLE with high resolution. The method is also robustified to address anomalies in real-time HRRSM data streams. The proposed method is validated on a large real-world SM dataset. Simulation results show that even with a small number of HRRSM installation, the proposed method can track feeder loads with much improved accuracy and temporal granularity compared with conventional methods based on historical data of regular SMs, providing a cost-effective solution to the monitoring of distribution feeder loads.

Suggested Citation

  • Islam, Md. Zahidul & Lin, Yuzhang & Vokkarane, Vinod M. & Yu, Nanpeng, 2023. "Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013284
    DOI: 10.1016/j.apenergy.2023.121964
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cho, Yongjun & Lee, Eunjung & Baek, Keon & Kim, Jinho, 2023. "Stochastic Optimization-Based hosting capacity estimation with volatile net load deviation in distribution grids," Applied Energy, Elsevier, vol. 341(C).
    2. Lotfi, Mohamed & Almeida, Tiago & Javadi, Mohammad S. & Osório, Gerardo J. & Monteiro, Cláudio & Catalão, João P.S., 2022. "Coordinating energy management systems in smart cities with electric vehicles," Applied Energy, Elsevier, vol. 307(C).
    3. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    4. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    5. Xu, Junjun & Wu, Zaijun & Zhang, Tengfei & Hu, Qinran & Wu, Qiuwei, 2022. "A secure forecasting-aided state estimation framework for power distribution systems against false data injection attacks," Applied Energy, Elsevier, vol. 328(C).
    6. Rizeakos, V. & Bachoumis, A. & Andriopoulos, N. & Birbas, M. & Birbas, A., 2023. "Deep learning-based application for fault location identification and type classification in active distribution grids," Applied Energy, Elsevier, vol. 338(C).
    7. Jiang, Yuqi & Gao, Tianlu & Dai, Yuxin & Si, Ruiqi & Hao, Jun & Zhang, Jun & Gao, David Wenzhong, 2022. "Very short-term residential load forecasting based on deep-autoformer," Applied Energy, Elsevier, vol. 328(C).
    8. Yin, Linfei & Xie, Jiaxing, 2021. "Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems," Applied Energy, Elsevier, vol. 283(C).
    9. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    10. Fekri, Mohammad Navid & Patel, Harsh & Grolinger, Katarina & Sharma, Vinay, 2021. "Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network," Applied Energy, Elsevier, vol. 282(PA).
    11. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    2. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.
    3. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    4. Antić, Tomislav & Capuder, Tomislav, 2024. "A geographic information system-based modelling, analysing and visualising of low voltage networks: The potential of demand time-shifting in the power quality improvement," Applied Energy, Elsevier, vol. 353(PA).
    5. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    6. Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
    7. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    8. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    9. Steven D. Silver & Marko Raseta, 2021. "An ARFIMA multi-level model of dual-component expectations in repeated cross-sectional survey data," Empirical Economics, Springer, vol. 60(2), pages 683-699, February.
    10. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    11. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    12. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    13. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    14. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    15. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    16. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    17. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    18. Tatiana Tucunduva Philippi Cortese & Jairo Filho Sousa de Almeida & Giseli Quirino Batista & José Eduardo Storopoli & Aaron Liu & Tan Yigitcanlar, 2022. "Understanding Sustainable Energy in the Context of Smart Cities: A PRISMA Review," Energies, MDPI, vol. 15(7), pages 1-38, March.
    19. H. Kent Baker & Satish Kumar & Debidutta Pattnaik, 2021. "Research constituents, intellectual structure, and collaboration pattern in the Journal of Forecasting: A bibliometric analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 577-602, July.
    20. Imani, Maryam, 2021. "Electrical load-temperature CNN for residential load forecasting," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.