Deep learning-based application for fault location identification and type classification in active distribution grids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.120932
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- He, Feifei & Zhou, Jianzhong & Mo, Li & Feng, Kuaile & Liu, Guangbiao & He, Zhongzheng, 2020. "Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest," Applied Energy, Elsevier, vol. 262(C).
- Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Antonio E. Saldaña-González & Andreas Sumper & Mònica Aragüés-Peñalba & Miha Smolnikar, 2020. "Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review," Energies, MDPI, vol. 13(14), pages 1-34, July.
- Adriana Mar & Pedro Pereira & João F. Martins, 2019. "A Survey on Power Grid Faults and Their Origins: A Contribution to Improving Power Grid Resilience," Energies, MDPI, vol. 12(24), pages 1-21, December.
- Nguyen, H.D. & Tran, K.P. & Thomassey, S. & Hamad, M., 2021. "Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management," International Journal of Information Management, Elsevier, vol. 57(C).
- Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
- Wanghao Fei & Paul Moses, 2019. "Fault Current Tracing and Identification via Machine Learning Considering Distributed Energy Resources in Distribution Networks," Energies, MDPI, vol. 12(22), pages 1-12, November.
- Hare, James & Shi, Xiaofang & Gupta, Shalabh & Bazzi, Ali, 2016. "Fault diagnostics in smart micro-grids: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1114-1124.
- Fekri, Mohammad Navid & Patel, Harsh & Grolinger, Katarina & Sharma, Vinay, 2021. "Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network," Applied Energy, Elsevier, vol. 282(PA).
- Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Pan & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos & Alharthi, Yahya Z. & Safaraliev, Murodbek, 2024. "An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers," Applied Energy, Elsevier, vol. 363(C).
- Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
- Islam, Md. Zahidul & Lin, Yuzhang & Vokkarane, Vinod M. & Yu, Nanpeng, 2023. "Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates," Applied Energy, Elsevier, vol. 352(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
- Giovanni Betta & Domenico Capriglione & Luigi Ferrigno & Marco Laracca & Gianfranco Miele & Nello Polese & Silvia Sangiovanni, 2021. "A Fault Diagnostic Scheme for Predictive Maintenance of AC/DC Converters in MV/LV Substations," Energies, MDPI, vol. 14(22), pages 1-23, November.
- Moamin A. Mahmoud & Naziffa Raha Md Nasir & Mathuri Gurunathan & Preveena Raj & Salama A. Mostafa, 2021. "The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review," Energies, MDPI, vol. 14(16), pages 1-27, August.
- Mojgan Hojabri & Severin Nowak & Antonios Papaemmanouil, 2023. "ML-Based Intermittent Fault Detection, Classification, and Branch Identification in a Distribution Network," Energies, MDPI, vol. 16(16), pages 1-15, August.
- Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Arafat, M.Y. & Hossain, M.J. & Alam, Md Morshed, 2024. "Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
- Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
- Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Chen, Yizhong & He, Li & Li, Jing, 2017. "Stochastic dominant-subordinate-interactive scheduling optimization for interconnected microgrids with considering wind-photovoltaic-based distributed generations under uncertainty," Energy, Elsevier, vol. 130(C), pages 581-598.
- Alain Aoun & Mehdi Adda & Adrian Ilinca & Mazen Ghandour & Hussein Ibrahim, 2024. "Centralized vs. Decentralized Electric Grid Resilience Analysis Using Leontief’s Input–Output Model," Energies, MDPI, vol. 17(6), pages 1-21, March.
- Türkoğlu, A. Selim & Erkmen, Burcu & Eren, Yavuz & Erdinç, Ozan & Küçükdemiral, İbrahim, 2024. "Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application," Applied Energy, Elsevier, vol. 360(C).
- Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
- El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
- Kara Mostefa Khelil, Chérifa & Amrouche, Badia & Benyoucef, Abou soufiane & Kara, Kamel & Chouder, Aissa, 2020. "New Intelligent Fault Diagnosis (IFD) approach for grid-connected photovoltaic systems," Energy, Elsevier, vol. 211(C).
- Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
- Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Daniel Sousa-Dias & Daniel Amyot & Ashkan Rahimi-Kian & John Mylopoulos, 2023. "A Review of Cybersecurity Concerns for Transactive Energy Markets," Energies, MDPI, vol. 16(13), pages 1-32, June.
- Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
More about this item
Keywords
Active distribution grids; CNNs; Deep learning; Fault detection and location identification; Wavelet transformation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:338:y:2023:i:c:s0306261923002969. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.