IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v60y2021i2d10.1007_s00181-019-01757-7.html
   My bibliography  Save this article

An ARFIMA multi-level model of dual-component expectations in repeated cross-sectional survey data

Author

Listed:
  • Steven D. Silver

    (California State University)

  • Marko Raseta

    (Keele University)

Abstract

Expectations for price in financial markets continue to be extensively investigated in multi-component models. An empirical assessment of the components of these models is challenged by the form of measured expectations in single components and sampling in repeated cross-sectional designs. We report an operationalization of a multi-component model of expectations in cross-sectional and time series data that are estimated in an ARFIMA multi-level model. Our results indicate the significance of measures of components we define at both agent and aggregate levels in predicting a widely cited measure of consumer expectations.

Suggested Citation

  • Steven D. Silver & Marko Raseta, 2021. "An ARFIMA multi-level model of dual-component expectations in repeated cross-sectional survey data," Empirical Economics, Springer, vol. 60(2), pages 683-699, February.
  • Handle: RePEc:spr:empeco:v:60:y:2021:i:2:d:10.1007_s00181-019-01757-7
    DOI: 10.1007/s00181-019-01757-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-019-01757-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-019-01757-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. So, Beong Soo & Shin, Dong Wan, 1999. "Recursive mean adjustment in time-series inferences," Statistics & Probability Letters, Elsevier, vol. 43(1), pages 65-73, May.
    2. Hüsler, A. & Sornette, D. & Hommes, C.H., 2013. "Super-exponential bubbles in lab experiments: Evidence for anchoring over-optimistic expectations on price," Journal of Economic Behavior & Organization, Elsevier, vol. 92(C), pages 304-316.
    3. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    4. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    5. Thomas J. Sargent, 2013. "Rational Expectations and Inflation (Third Edition)," Economics Books, Princeton University Press, edition 3, volume 1, number 10000.
    6. Hommes, Cars & Sonnemans, Joep & Tuinstra, Jan & van de Velden, Henk, 2008. "Expectations and bubbles in asset pricing experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 67(1), pages 116-133, July.
    7. Robin Greenwood & Andrei Shleifer, 2014. "Expectations of Returns and Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 714-746.
    8. Graves, Timothy & Franzke, Christian L.E. & Watkins, Nicholas W. & Gramacy, Robert B. & Tindale, Elizabeth, 2017. "Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 60-71.
    9. Klinger, Sabine & Weber, Enzo, 2016. "Detecting unemployment hysteresis: A simultaneous unobserved components model with Markov switching," Economics Letters, Elsevier, vol. 144(C), pages 115-118.
    10. Daniel Kahneman, 2003. "Maps of Bounded Rationality: Psychology for Behavioral Economics," American Economic Review, American Economic Association, vol. 93(5), pages 1449-1475, December.
    11. W.-X. Zhou & D. Sornette, 2007. "Self-organizing Ising model of financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 175-181, January.
    12. Chen, Shiu-Sheng, 2011. "Lack of consumer confidence and stock returns," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 225-236, March.
    13. Schmeling, Maik & Schrimpf, Andreas, 2011. "Expected inflation, expected stock returns, and money illusion: What can we learn from survey expectations?," European Economic Review, Elsevier, vol. 55(5), pages 702-719, June.
    14. Mr. Sunil Sharma & Sushil Bikhchandani, 2000. "Herd Behavior in Financial Markets: A Review," IMF Working Papers 2000/048, International Monetary Fund.
    15. Griliches, Zvi & Ringstad, Vidar, 1970. "Error-in-the-Variables Bias in Nonlinear Contexts," Econometrica, Econometric Society, vol. 38(2), pages 368-370, March.
    16. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
    17. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    18. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    19. Wonho Song & Doojin Ryu & Robert I. Webb, 2018. "Volatility dynamics under an endogenous Markov-switching framework: a cross-market approach," Quantitative Finance, Taylor & Francis Journals, vol. 18(9), pages 1559-1571, September.
    20. Maria Andersson & Martin Hedesström & Tommy Gärling, 2014. "A Social-Psychological Perspective on Herding in Stock Markets," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 15(3), pages 226-234, July.
    21. Esam Mahdi & A. Ian McLeod, 2012. "Improved multivariate portmanteau test," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 211-222, March.
    22. B. M. Roehner & D. Sornette, 2000. ""Thermometers" of Speculative Frenzy," Papers cond-mat/0001353, arXiv.org.
    23. Eckrot, A. & Jurczyk, J. & Morgenstern, I., 2016. "Ising model of financial markets with many assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 250-254.
    24. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    25. Jean-Paul Fox & Cees Glas, 2003. "Bayesian modeling of measurement error in predictor variables using item response theory," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 169-191, June.
    26. Matthew J. Lebo & Christopher Weber, 2015. "An Effective Approach to the Repeated Cross‐Sectional Design," American Journal of Political Science, John Wiley & Sons, vol. 59(1), pages 242-258, January.
    27. Arrow, Kenneth J, 1986. "Rationality of Self and Others in an Economic System," The Journal of Business, University of Chicago Press, vol. 59(4), pages 385-399, October.
    28. van Raaij, W. Fred, 1989. "Economic news, expectations and macro-economic behaviour," Journal of Economic Psychology, Elsevier, vol. 10(4), pages 473-493.
    29. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silver, Steven D. & Raseta, Marko & Bazarova, Alina, 2023. "Stochastic resonance in the recovery of signal from agent price expectations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    3. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    4. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    5. Kroujiline, Dimitri & Gusev, Maxim & Ushanov, Dmitry & Sharov, Sergey V. & Govorkov, Boris, 2015. "Forecasting stock market returns over multiple time horizons," MPRA Paper 66175, University Library of Munich, Germany.
    6. Zhang, Mu & Zheng, Jie, 2017. "A robust reference-dependent model for speculative bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 137(C), pages 232-258.
    7. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    8. Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2016. "Forecasting stock market returns over multiple time horizons," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1695-1712, November.
    9. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    10. Sunyoung Lee & Keun Lee, 2021. "3% rules the market: herding behavior of a group of investors, asset market volatility, and return to the group in an agent-based model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(2), pages 359-380, April.
    11. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    12. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
    13. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Ren, Fei & He, Yun-Xing, 2018. "Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 301-310.
    14. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    15. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    16. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    17. Matthew Oldham, 2019. "Understanding How Short-Termism and a Dynamic Investor Network Affects Investor Returns: An Agent-Based Perspective," Complexity, Hindawi, vol. 2019, pages 1-21, July.
    18. Jean-Philippe Bouchaud, 2012. "Crises and collective socio-economic phenomena: simple models and challenges," Papers 1209.0453, arXiv.org, revised Dec 2012.
    19. Kirill S. Glavatskiy & Mikhail Prokopenko & Adrian Carro & Paul Ormerod & Michael Harré, 2021. "Explaining herding and volatility in the cyclical price dynamics of urban housing markets using a large-scale agent-based model," SN Business & Economics, Springer, vol. 1(6), pages 1-21, June.
    20. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.

    More about this item

    Keywords

    Expectations; Multi-component models; Estimation in RCSs; Behavioral finance;
    All these keywords.

    JEL classification:

    • B41 - Schools of Economic Thought and Methodology - - Economic Methodology - - - Economic Methodology
    • C29 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Other
    • G40 - Financial Economics - - Behavioral Finance - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:60:y:2021:i:2:d:10.1007_s00181-019-01757-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.