IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923010206.html
   My bibliography  Save this article

Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture

Author

Listed:
  • Wu, Xiaomei
  • Mao, Yuanhao
  • Fan, Huifeng
  • Sultan, Sayd
  • Yu, Yunsong
  • Zhang, Zaoxiao

Abstract

EDA-Cu based electrochemically mediated CO2 capture method was developed as a promising technology to substitute the conventional amine-based CO2 capture, especially in industries without available steam source. However, the highly corrosive and poor Cu cycling performance seriously obstruct its large-scale application. In this work, traditional primary amine, secondary amine and tertiary amine (MEA, DEA and TEA) are chosen to blend with EDA to alleviate the problems of EDA. Electrochemical measurements, corrosiveness comparison, CO2 absorption and desorption performance were conducted to investigate the advance performance of proposed blended solvents comprehensively. The corrosion potential in all the mixtures is significantly higher than that in sole EDA solution, which illustrates that the corrosiveness of proposed mixed solvents to Cu electrode is weaker. Besides, the Cu cycling performance is greatly improved and the energy consumption is significantly reduced by using blended solvents. Overall, 50/50 EDA/MEA mixed solution with high CO2 capacity and fast absorption rate is suggested to be a substitute for traditional EDA solvent. The CO2 desorption energy consumption of 50/50 EDA/MEA mixed solution decreases 14% than that of EDA solution at a current density of 0.01 A/cm2. Meanwhile, the copper cycling performance is also improved in 50/50 EDA/MEA mixed solution as the cathode Faraday efficiency (CFE) increased from 43% (EDA) to 53% (50/50 EDA/MEA). Results show that the proposed mixed amine solvents lead to the successful circumvention of highly corrosive and poor Cu cycling performance in the electrochemically mediated CO2 capture system, which will contribute to the exploration of efficient blended solvents for EMAR CO2 capture process and promote its industrial application.

Suggested Citation

  • Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010206
    DOI: 10.1016/j.apenergy.2023.121656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923010206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joeri Rogelj & Daniel Huppmann & Volker Krey & Keywan Riahi & Leon Clarke & Matthew Gidden & Zebedee Nicholls & Malte Meinshausen, 2019. "A new scenario logic for the Paris Agreement long-term temperature goal," Nature, Nature, vol. 573(7774), pages 357-363, September.
    2. Xiao, Min & Liu, Helei & Idem, Raphael & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2016. "A study of structure–activity relationships of commercial tertiary amines for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 184(C), pages 219-229.
    3. Lai, Qinghua & Kong, Lingli & Gong, Weibo & Russell, Armistead G & Fan, Maohong, 2019. "Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution," Applied Energy, Elsevier, vol. 254(C).
    4. Bin Shao & Zhi-Qiang Wang & Xue-Qing Gong & Honglai Liu & Feng Qian & P. Hu & Jun Hu, 2023. "Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    6. Li, Kangkang & Jiang, Kaiqi & Jones, Timothy W. & Feron, Paul H.M. & Bennett, Robert D. & Hollenkamp, Anthony F., 2019. "CO2 regenerative battery for energy harvesting from ammonia-based post-combustion CO2 capture," Applied Energy, Elsevier, vol. 247(C), pages 417-425.
    7. Wang, Miao & Rahimi, Mohammad & Kumar, Amit & Hariharan, Subrahmaniam & Choi, Wonyoung & Hatton, T. Alan, 2019. "Flue gas CO2 capture via electrochemically mediated amine regeneration: System design and performance," Applied Energy, Elsevier, vol. 255(C).
    8. Xing Li & Xunhua Zhao & Yuanyue Liu & T. Alan Hatton & Yayuan Liu, 2022. "Redox-tunable Lewis bases for electrochemical carbon dioxide capture," Nature Energy, Nature, vol. 7(11), pages 1065-1075, November.
    9. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    10. Wang, Changhong & Jiang, Kaiqi & Yu, Hai & Yang, Shenghai & Li, Kangkang, 2022. "Copper electrowinning-coupled CO2 capture in solvent based post-combustion capture," Applied Energy, Elsevier, vol. 316(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Yuanhao & Sultan, Sayd & Fan, Huifeng & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents," Applied Energy, Elsevier, vol. 369(C).
    2. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    2. Sang‐Jun Han & Jung‐Ho Wee, 2021. "Comparison of CO2 absorption performance between methyl‐di‐ ethanolamine and tri‐ethanolamine solution systems and its analysis in terms of amine molecules," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 445-460, June.
    3. Mao, Yuanhao & Sultan, Sayd & Fan, Huifeng & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents," Applied Energy, Elsevier, vol. 369(C).
    4. Xing Li & Xunhua Zhao & Lingyu Zhang & Anmol Mathur & Yu Xu & Zhiwei Fang & Luo Gu & Yuanyue Liu & Yayuan Liu, 2024. "Redox-tunable isoindigos for electrochemically mediated carbon capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Zhen Xu & Grace Mapstone & Zeke Coady & Mengnan Wang & Tristan L. Spreng & Xinyu Liu & Davide Molino & Alexander C. Forse, 2024. "Enhancing electrochemical carbon dioxide capture with supercapacitors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Wang, Changhong & Jiang, Kaiqi & Yu, Hai & Yang, Shenghai & Li, Kangkang, 2022. "Copper electrowinning-coupled CO2 capture in solvent based post-combustion capture," Applied Energy, Elsevier, vol. 316(C).
    7. Wu, Xiaomei & Fan, Huifeng & Sharif, Maimoona & Yu, Yunsong & Wei, Keming & Zhang, Zaoxiao & Liu, Guangxin, 2021. "Electrochemically-mediated amine regeneration of CO2 capture: From electrochemical mechanism to bench-scale visualization study," Applied Energy, Elsevier, vol. 302(C).
    8. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    9. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    10. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    11. Zhang, Congyu & Chen, Wei-Hsin & Saravanakumar, Ayyadurai & Lin, Kun-Yi Andrew & Zhang, Ying, 2024. "Comparison of torrefaction and hydrothermal carbonization of high-moisture microalgal feedstock," Renewable Energy, Elsevier, vol. 225(C).
    12. Zhang, Rui & Yang, Qi & Yu, Bing & Yu, Hai & Liang, Zhiwu, 2018. "Toward to efficient CO2 capture solvent design by analyzing the effect of substituent type connected to N-atom," Energy, Elsevier, vol. 144(C), pages 1064-1072.
    13. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    14. Gorbach, O.G. & Kost, C. & Pickett, C., 2022. "Review of internal carbon pricing and the development of a decision process for the identification of promising Internal Pricing Methods for an Organisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    16. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    17. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
    18. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    19. Fangli Zhang & Wenchao Zhang & Jodie A. Yuwono & David Wexler & Yameng Fan & Jinshuo Zou & Gemeng Liang & Liang Sun & Zaiping Guo, 2024. "Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.