IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016702.html
   My bibliography  Save this article

Performance enhancement of desorption reactor in the electrochemically mediated amine regeneration CO2 capture process: Thru modelling, simulation, and optimization

Author

Listed:
  • Fan, Huifeng
  • Mao, Yuanhao
  • Sultan, Sayd
  • Yu, Yunsong
  • Wu, Xiaomei
  • Zhang, Zaoxiao

Abstract

The electrochemically mediated amine regeneration (EMAR) carbon dioxide (CO2) capture process has significant potential in mitigating CO2 emissions. A suitable desorption reactor plays a pivotal role in realizing the efficient utilization of the EMAR technology. This study concentrates on the simulation and improvement of the desorption reactor for the EMAR process. To begin with, a comprehensive multi-physics model was developed to simulate the desorption process within a laboratory flat-plate reactor. The concentration distributions of reactive ions and the effect of CO2 bubbles in the electrolyte were analyzed. Results indicated that shortening electrode length is a practical measure to enhance desorption reactor efficiency. The study also explored the impact of critical operational variables, including electrolyte flow direction, flow rate, copper ions loading, and applied potential. Notably, controlling the applied potential proved highly effective for regulating desorption performance, with optimal adjustment maximizing overall efficiency. Based on these findings and the characteristics of the EMAR process, a novel multi-electrode partitioned EMAR desorption reactor was proposed as an enhancement to the flat-plate reactor. By applying distributed potential, improved desorption performance was obtained, resulting in a 20.05% increase in the CO2 desorption rate with only a 4.04% increase in the unit desorption energy consumption. These findings provide significant insights for optimizing the design and implementation of the EMAR desorption reactor.

Suggested Citation

  • Fan, Huifeng & Mao, Yuanhao & Sultan, Sayd & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Performance enhancement of desorption reactor in the electrochemically mediated amine regeneration CO2 capture process: Thru modelling, simulation, and optimization," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016702
    DOI: 10.1016/j.apenergy.2024.124287
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    2. He, Xinwei & He, Hang & Barzagli, Francesco & Amer, Mohammad Waleed & Li, Chao'en & Zhang, Rui, 2023. "Analysis of the energy consumption in solvent regeneration processes using binary amine blends for CO2 capture," Energy, Elsevier, vol. 270(C).
    3. Maleki, Javad & Eskandari, Mehdi & Fathi, Davood, 2024. "New design and optimization of half-tandem quantum dot solar cell: Over 30% power conversion efficiency using nanostructure oriented core-shell," Renewable Energy, Elsevier, vol. 222(C).
    4. Fan, Huifeng & Mao, Yuanhao & Gao, Jifeng & Tong, Shuyue & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2023. "Combined experimental and computational study for the electrode process of electrochemically mediated amine regeneration (EMAR) CO2 capture," Applied Energy, Elsevier, vol. 350(C).
    5. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    7. Mao, Yuanhao & Sultan, Sayd & Fan, Huifeng & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents," Applied Energy, Elsevier, vol. 369(C).
    8. Zhang, Xiaowen & Zhang, Rui & Liu, Helei & Gao, Hongxia & Liang, Zhiwu, 2018. "Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts," Applied Energy, Elsevier, vol. 218(C), pages 417-429.
    9. Wang, Miao & Rahimi, Mohammad & Kumar, Amit & Hariharan, Subrahmaniam & Choi, Wonyoung & Hatton, T. Alan, 2019. "Flue gas CO2 capture via electrochemically mediated amine regeneration: System design and performance," Applied Energy, Elsevier, vol. 255(C).
    10. Wu, Xiaomei & Fan, Huifeng & Sharif, Maimoona & Yu, Yunsong & Wei, Keming & Zhang, Zaoxiao & Liu, Guangxin, 2021. "Electrochemically-mediated amine regeneration of CO2 capture: From electrochemical mechanism to bench-scale visualization study," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Yuanhao & Sultan, Sayd & Fan, Huifeng & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2024. "Stability improvement of the advanced electrochemical CO2 capture process with high-capacity polyamine solvents," Applied Energy, Elsevier, vol. 369(C).
    2. Fan, Huifeng & Mao, Yuanhao & Gao, Jifeng & Tong, Shuyue & Yu, Yunsong & Wu, Xiaomei & Zhang, Zaoxiao, 2023. "Combined experimental and computational study for the electrode process of electrochemically mediated amine regeneration (EMAR) CO2 capture," Applied Energy, Elsevier, vol. 350(C).
    3. Wu, Xiaomei & Fan, Huifeng & Mao, Yuanhao & Sharif, Maimoona & Yu, Yunsong & Zhang, Zaoxiao & Liu, Guangxin, 2022. "Systematic study of an energy efficient MEA-based electrochemical CO2 capture process: From mechanism to practical application," Applied Energy, Elsevier, vol. 327(C).
    4. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    5. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    6. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
    7. Zhou, Jianli & Chen, Zhuohao & Wu, Shuxian & Yang, Cheng & Wang, Yaqi & Wu, Yunna, 2024. "Potential assessment and development obstacle analysis of CCUS layout in China: A combined interpretive model based on GIS-DEMATEL-ISM," Energy, Elsevier, vol. 310(C).
    8. Chen, Yang & Wu, Ye & Liu, Xing & Ma, Jiliang & Liu, Daoyin & Chen, Xiaoping & Liu, Dong, 2024. "Energy, exergy and economic (3E) analysis of a novel integration process based on coal-fired power plant with CO2 capture & storage, CO2 refrigeration, and waste heat recovery," Energy, Elsevier, vol. 299(C).
    9. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    10. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    11. Li, Yuwan & Yuen, Kum Fai & Zhou, Yusheng, 2024. "Risk assessment of achieving greenhouse gas emission reduction target in the maritime industry," Transport Policy, Elsevier, vol. 155(C), pages 29-46.
    12. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    13. Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
    14. Han, Sung-Chul & Sung, Hail & Noh, Hye-Won & Mazari, Shaukat Ali & Moon, Jong-Ho & Kim, Kyung-Min, 2024. "Synergistic effect of blended amines on carbon dioxide absorption: Thermodynamic modeling and analysis of regeneration energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    15. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    16. Wang, Tian & Fan, Ziyu & Sun, Lingjie & Yang, Lei & Zhao, Jiafei & Song, Yongchen & Zhang, Lunxiang, 2024. "Pore-scale behaviors of CO2 hydrate formation and dissociation in the presence of swelling clay: Implication for geologic carbon sequestration," Energy, Elsevier, vol. 308(C).
    17. Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
    18. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    19. Dehbani, Maryam & Rashidi, Hamed, 2023. "Simultaneous use of microfluidics, ultrasound and alcoholic solvents for improving CO2 desorption process," Energy, Elsevier, vol. 276(C).
    20. Xing Li & Xunhua Zhao & Lingyu Zhang & Anmol Mathur & Yu Xu & Zhiwei Fang & Luo Gu & Yuanyue Liu & Yayuan Liu, 2024. "Redox-tunable isoindigos for electrochemically mediated carbon capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.