IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922008704.html
   My bibliography  Save this article

Robust comprehensive PV hosting capacity assessment model for active distribution networks with spatiotemporal correlation

Author

Listed:
  • Wu, Han
  • Yuan, Yue
  • Zhang, Xinsong
  • Miao, Ankang
  • Zhu, Junpeng

Abstract

Variate but similar microclimate in different buses of a distribution system usually leads to correlated photovoltaic (PV) outputs. Such correlation may reduce the PV output uncertainty and enhance the hosting capacity of active distribution networks (ADNs). To fully elucidate the hosting capacity of geographically dispersed PV, this paper proposes a novel robust comprehensive PV capacity assessment model that considers both the spatiotemporal correlation of PV output and active distribution network management (ADNM) techniques. In the proposed model, the historical PV output data of the vicinity region are employed to generate the empirical spatial and temporal correlation matrix and ellipsoidal uncertainty sets for arbitrary PV site pairs. The uncertainty of PV outputs is addressed by a two-stage robust optimization. Concerning distribution network characteristics, the proposed capacity assessment model employs a convex conic quadratic format of AC power flow equations that are transformed into second-order cone programming. A historical PV output dataset from Suzhou China and a 59-bus rural distribution system in an adjacent city was used to demonstrate the effectiveness of the proposed PV hosting capacity assessment methodology. The hosting capacity results indicate that both spatial and temporal correlations can enhance the PV hosting capacity. Considering both the spatial and temporal leads to a significant increase in PV hosting capacity. To obtain an accurate PV hosting capacity, both spatial and temporal features should be simultaneously considered.

Suggested Citation

  • Wu, Han & Yuan, Yue & Zhang, Xinsong & Miao, Ankang & Zhu, Junpeng, 2022. "Robust comprehensive PV hosting capacity assessment model for active distribution networks with spatiotemporal correlation," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008704
    DOI: 10.1016/j.apenergy.2022.119558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922008704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    2. Fang, Xin & Hodge, Bri-Mathias & Du, Ershun & Zhang, Ning & Li, Fangxing, 2018. "Modelling wind power spatial-temporal correlation in multi-interval optimal power flow: A sparse correlation matrix approach," Applied Energy, Elsevier, vol. 230(C), pages 531-539.
    3. Alturki, Mansoor & Khodaei, Amin & Paaso, Aleksi & Bahramirad, Shay, 2018. "Optimization-based distribution grid hosting capacity calculations," Applied Energy, Elsevier, vol. 219(C), pages 350-360.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qianlong & Zhang, Chu & Li, Zhengbo & Peng, Tian & Zhang, Zhao & Du, Dongsheng & Nazir, Muhammad Shahzad, 2024. "Multi-strategy adaptive guidance differential evolution algorithm using fitness-distance balance and opposition-based learning for constrained global optimization of photovoltaic cells and modules," Applied Energy, Elsevier, vol. 353(PA).
    2. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    3. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Export Constraints Applicable to Renewable Generation to Enhance Grid Hosting Capacity," Energies, MDPI, vol. 17(11), pages 1-30, May.
    4. Karmaker, Ashish Kumar & Prakash, Krishneel & Siddique, Md Nazrul Islam & Hossain, Md Alamgir & Pota, Hemanshu, 2024. "Electric vehicle hosting capacity analysis: Challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Hongmin & Qin, Wenping & Jing, Xiang & Zhu, Zhilong & Wang, Ke & Han, Xiaoqing & Wang, Peng, 2022. "Possibilistic evaluation of photovoltaic hosting capacity on distribution networks under uncertain environment," Applied Energy, Elsevier, vol. 324(C).
    2. Cho, Yongjun & Lee, Eunjung & Baek, Keon & Kim, Jinho, 2023. "Stochastic Optimization-Based hosting capacity estimation with volatile net load deviation in distribution grids," Applied Energy, Elsevier, vol. 341(C).
    3. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    4. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    5. Xin Yan & Qian Zhang, 2023. "Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA," Sustainability, MDPI, vol. 15(12), pages 1-34, June.
    6. Haoxiang Yang & David P. Morton & Chaithanya Bandi & Krishnamurthy Dvijotham, 2021. "Robust Optimization for Electricity Generation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 336-351, January.
    7. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    8. Jiang, Xun & Zhou, Yue & Ming, Wenlong & Wu, Jianzhong, 2023. "Feasible operation region of an electricity distribution network," Applied Energy, Elsevier, vol. 331(C).
    9. Hwang, Hyunkyeong & Yoon, Ahyun & Yoon, Yongtae & Moon, Seungil, 2023. "Demand response of HVAC systems for hosting capacity improvement in distribution networks: A comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Vincent Umoh & Innocent Davidson & Abayomi Adebiyi & Unwana Ekpe, 2023. "Methods and Tools for PV and EV Hosting Capacity Determination in Low Voltage Distribution Networks—A Review," Energies, MDPI, vol. 16(8), pages 1-25, April.
    11. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Yin, Linfei & Wang, Tao & Wang, Senlin & Zheng, Baomin, 2019. "Interchange objective value method for distributed multi-objective optimization: Theory, application, implementation," Applied Energy, Elsevier, vol. 239(C), pages 1066-1076.
    13. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
    14. Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
    15. Li Bin & Rashana Abbas & Muhammad Shahzad & Nouman Safdar, 2023. "Probabilistic Load Flow Analysis Using Nonparametric Distribution," Sustainability, MDPI, vol. 16(1), pages 1-13, December.
    16. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    17. Rui Wang & Haoran Ji & Peng Li & Hao Yu & Jinli Zhao & Liang Zhao & Yue Zhou & Jianzhong Wu & Linquan Bai & Jinyue Yan & Chengshan Wang, 2024. "Multi-resource dynamic coordinated planning of flexible distribution network," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Huang, Zhanghao & Zhang, Yachao & Xie, Shiwei, 2022. "Data-adaptive robust coordinated optimization of dynamic active and reactive power flow in active distribution networks," Renewable Energy, Elsevier, vol. 188(C), pages 164-183.
    19. Fang, Xin & Cui, Hantao & Yuan, Haoyu & Tan, Jin & Jiang, Tao, 2019. "Distributionally-robust chance constrained and interval optimization for integrated electricity and natural gas systems optimal power flow with wind uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Gao, Fang & Xu, Zidong & Yin, Linfei, 2024. "Bayesian deep neural networks for spatio-temporal probabilistic optimal power flow with multi-source renewable energy," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.