IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v368y2024ics0306261924005154.html
   My bibliography  Save this article

Improving ship energy efficiency: Models, methods, and applications

Author

Listed:
  • Yan, Ran
  • Yang, Dong
  • Wang, Tianyu
  • Mo, Haoyu
  • Wang, Shuaian

Abstract

Maritime transportation is the backbone of global trade, as ships carry over 80% of trading goods worldwide. As the shipping industry is mainly powered by heavy fuel oil, it has an adverse environmental footprint due to the emissions of greenhouse gases and polluting substances. To comply with IMO emission regulations and optimally save on fuel costs (which can account up for 50% to 60% of the total cost of operating a ship), shipping companies are motivated to optimize energy consumption. In this study, we first develop am innovative and tailored artificial neural network-based fuel consumption prediction model. This model innovates in that it explicitly considers shipping domain knowledge by modifying and optimizing its structure and parameters, where such properties have rigorously been proven. Moreover, it considers a broad range of influence factors based on data fusion technology. Next, we optimize the ship sailing speed profile for a bulk carrier in two application scenarios using the predicted fuel consumption rates by the proposed neural network-based model as the input: one is a bi-objective model, and the other considers market-based measures. Numerical experiments show that the proposed fuel consumption prediction model outperforms other models and that the model we propose can help to improve ship energy efficiency by a considerable extent. The proposed model conforms more closely to common sense than existing models; thus, it will likely have a better potential for use in the maritime industry and other problems with similar domain knowledge possessed.

Suggested Citation

  • Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
  • Handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924005154
    DOI: 10.1016/j.apenergy.2024.123132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:368:y:2024:i:c:s0306261924005154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.