IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v229y2018icp804-813.html
   My bibliography  Save this article

Distributed voltage control for active distribution networks based on distribution phasor measurement units

Author

Listed:
  • Wang, Xiaoxue
  • Wang, Chengshan
  • Xu, Tao
  • Meng, He
  • Li, Peng
  • Yu, Li

Abstract

This paper explores a distributed coordinated control algorithm for active distribution networks (ADNs) based on measurements of distribution phasor measurement units (DPMUs) that are only installed at a portion of network nodes. First of all, a network topology simplification method is proposed to deal with the lack of impedance and power information in ADNs. Specifically, sub-networks with unknown impedance and power information are transformed to simplified networks with known equivalent parameters that are derived from the measurements of DPMUs at the sub-network boundaries. After that, a fully distributed control strategy utilizing a multiple agent system (MAS) is employed to control voltage during voltage excursions in ADNs, and to optimize network losses if no voltage excursions occur. MAS achieves global voltage control through distributed decision-making according to the voltage-power sensitivities that are calculated by each agent based on local and neighbourhood measurements. MAS balances reactive power locally to reduce network active power losses. The convergence of the proposed distributed voltage control method is proved. Finally, the feasibility and effectiveness of the proposed method has been demonstrated on a modified IEEE 33-bus system.

Suggested Citation

  • Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Meng, He & Li, Peng & Yu, Li, 2018. "Distributed voltage control for active distribution networks based on distribution phasor measurement units," Applied Energy, Elsevier, vol. 229(C), pages 804-813.
  • Handle: RePEc:eee:appene:v:229:y:2018:i:c:p:804-813
    DOI: 10.1016/j.apenergy.2018.08.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918311966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kabir, M.N. & Mishra, Y. & Ledwich, G. & Xu, Z. & Bansal, R.C., 2014. "Improving voltage profile of residential distribution systems using rooftop PVs and Battery Energy Storage systems," Applied Energy, Elsevier, vol. 134(C), pages 290-300.
    2. Kargarian, A. & Raoofat, M. & Mohammadi, M., 2011. "Reactive power market management considering voltage control area reserve and system security," Applied Energy, Elsevier, vol. 88(11), pages 3832-3840.
    3. Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Guo, Lingxu & Li, Peng & Yu, Li & Meng, He, 2018. "Optimal voltage regulation for distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 210(C), pages 1027-1036.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    2. Tsao, Yu-Chung & Beyene, Tsehaye Dedimas & Thanh, Vo-Van & Gebeyehu, Sisay Geremew & Kuo, Tsai-Chi, 2022. "Power distribution network design considering the distributed generations and differential and dynamic pricing," Energy, Elsevier, vol. 241(C).
    3. Zhao, Zhida & Yu, Hao & Li, Peng & Li, Peng & Kong, Xiangyu & Wu, Jianzhong & Wang, Chengshan, 2019. "Optimal placement of PMUs and communication links for distributed state estimation in distribution networks," Applied Energy, Elsevier, vol. 256(C).
    4. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
    5. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    6. Kang, Wenfa & Chen, Minyou & Guan, Yajuan & Wei, Baoze & Vasquez Q., Juan C. & Guerrero, Josep M., 2022. "Event-triggered distributed voltage regulation by heterogeneous BESS in low-voltage distribution networks," Applied Energy, Elsevier, vol. 312(C).
    7. Ghadikolaee, Ebad Talebi & Kazemi, Ahad & Shayanfar, Heydar Ali, 2020. "Novel multi-objective phasor measurement unit placement for improved parallel state estimation in distribution network," Applied Energy, Elsevier, vol. 279(C).
    8. Huo, Yuchong & Bouffard, François & Joós, Géza, 2021. "Decision tree-based optimization for flexibility management for sustainable energy microgrids," Applied Energy, Elsevier, vol. 290(C).
    9. Almasalma, Hamada & Claeys, Sander & Deconinck, Geert, 2019. "Peer-to-peer-based integrated grid voltage support function for smart photovoltaic inverters," Applied Energy, Elsevier, vol. 239(C), pages 1037-1048.
    10. Huo, Yuchong & Bouffard, François & Joós, Géza, 2022. "Integrating learning and explicit model predictive control for unit commitment in microgrids," Applied Energy, Elsevier, vol. 306(PA).
    11. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    12. Tang, Chong & Liu, Mingbo & Dai, Yue & Wang, Zhijun & Xie, Min, 2019. "Decentralized saddle-point dynamics solution for optimal power flow of distribution systems with multi-microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Su, Hongzhi & Wang, Chengshan & Li, Peng & Li, Peng & Liu, Zhelin & Wu, Jianzhong, 2019. "Novel voltage-to-power sensitivity estimation for phasor measurement unit-unobservable distribution networks based on network equivalent," Applied Energy, Elsevier, vol. 250(C), pages 302-312.
    14. Ferreira, Willian M. & Meneghini, Ivan R. & Brandao, Danilo I. & Guimarães, Frederico G., 2020. "Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
    2. Ferreira, Willian M. & Meneghini, Ivan R. & Brandao, Danilo I. & Guimarães, Frederico G., 2020. "Preference cone based multi-objective evolutionary algorithm applied to optimal management of distributed energy resources in microgrids," Applied Energy, Elsevier, vol. 274(C).
    3. Wang, Xiaoxue & Wang, Chengshan & Xu, Tao & Guo, Lingxu & Li, Peng & Yu, Li & Meng, He, 2018. "Optimal voltage regulation for distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 210(C), pages 1027-1036.
    4. Almasalma, Hamada & Claeys, Sander & Deconinck, Geert, 2019. "Peer-to-peer-based integrated grid voltage support function for smart photovoltaic inverters," Applied Energy, Elsevier, vol. 239(C), pages 1037-1048.
    5. Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
    6. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    7. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    8. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
    9. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    10. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    11. Kabir, M.N. & Mishra, Y. & Bansal, R.C., 2016. "Probabilistic load flow for distribution systems with uncertain PV generation," Applied Energy, Elsevier, vol. 163(C), pages 343-351.
    12. Jannesar, Mohammad Rasol & Sedighi, Alireza & Savaghebi, Mehdi & Guerrero, Josep M., 2018. "Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration," Applied Energy, Elsevier, vol. 226(C), pages 957-966.
    13. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    14. Yuan, Shengxi & Stainsby, Wendell & Li, Mo & Xu, Kewei & Waite, Michael & Zimmerle, Dan & Feiock, Richard & Ramaswami, Anu & Modi, Vijay, 2019. "Future energy scenarios with distributed technology options for residential city blocks in three climate regions of the United States," Applied Energy, Elsevier, vol. 237(C), pages 60-69.
    15. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part I: Active-Reactive Optimal Power Flow with Reactive Power of Wind Stations," Energies, MDPI, vol. 9(3), pages 1-12, February.
    16. Bielecki, Sławomir & Skoczkowski, Tadeusz, 2018. "An enhanced concept of Q-power management," Energy, Elsevier, vol. 162(C), pages 335-353.
    17. Kanyarusoke, Kant E. & Gryzagoridis, Jasson & Oliver, Graeme, 2016. "Re-mapping sub-Sahara Africa for equipment selection to photo electrify energy poor homes," Applied Energy, Elsevier, vol. 175(C), pages 240-250.
    18. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    19. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    20. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:229:y:2018:i:c:p:804-813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.