Combined central-local voltage control of inverter-based DG in active distribution networks11The short version of the paper was presented at CUE2023. This paper is a substantial extension of the short version of the conference paper
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2024.123813
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.
- Hu, Jiaxiang & Hu, Weihao & Cao, Di & Huang, Yuehui & Chen, Jianjun & Li, Yahe & Chen, Zhe & Blaabjerg, Frede, 2024. "Bayesian averaging-enabled transfer learning method for probabilistic wind power forecasting of newly built wind farms," Applied Energy, Elsevier, vol. 355(C).
- Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
- Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
- Chen, Yongdong & Liu, Youbo & Zhao, Junbo & Qiu, Gao & Yin, Hang & Li, Zhengbo, 2023. "Physical-assisted multi-agent graph reinforcement learning enabled fast voltage regulation for PV-rich active distribution network," Applied Energy, Elsevier, vol. 351(C).
- Lu, Xin & Qiu, Jing & Zhang, Cuo & Lei, Gang & Zhu, Jianguo, 2024. "Seizing unconventional arbitrage opportunities in virtual power plants: A profitable and flexible recruitment approach," Applied Energy, Elsevier, vol. 358(C).
- Abunima, Hamza & Park, Woan-Ho & Glick, Mark B. & Kim, Yun-Su, 2022. "Two-Stage stochastic optimization for operating a Renewable-Based Microgrid," Applied Energy, Elsevier, vol. 325(C).
- Gao, Yuanqi & Yu, Nanpeng, 2022. "Model-augmented safe reinforcement learning for Volt-VAR control in power distribution networks," Applied Energy, Elsevier, vol. 313(C).
- Kong, Xiangrui & Xu, Xiaoyuan & Yan, Zheng & Chen, Sijie & Yang, Huoming & Han, Dong, 2018. "Deep learning hybrid method for islanding detection in distributed generation," Applied Energy, Elsevier, vol. 210(C), pages 776-785.
- Ren, Xiaoying & Zhang, Fei & Zhu, Honglu & Liu, Yongqian, 2022. "Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting," Applied Energy, Elsevier, vol. 323(C).
- Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
- Cao, Di & Zhao, Junbo & Hu, Weihao & Ding, Fei & Yu, Nanpeng & Huang, Qi & Chen, Zhe, 2022. "Model-free voltage control of active distribution system with PVs using surrogate model-based deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
- Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
- Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
- Yongning Zhang & Xiaoying Ren & Fei Zhang & Yulei Liu & Jierui Li, 2024. "A Deep Learning-Based Dual-Scale Hybrid Model for Ultra-Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
- Guo, Guodong & Zhang, Mengfan & Gong, Yanfeng & Xu, Qianwen, 2023. "Safe multi-agent deep reinforcement learning for real-time decentralized control of inverter based renewable energy resources considering communication delay," Applied Energy, Elsevier, vol. 349(C).
- Kang, Wenfa & Chen, Minyou & Guan, Yajuan & Wei, Baoze & Vasquez Q., Juan C. & Guerrero, Josep M., 2022. "Event-triggered distributed voltage regulation by heterogeneous BESS in low-voltage distribution networks," Applied Energy, Elsevier, vol. 312(C).
- Gao, Yuanqi & Yu, Nanpeng, 2022. "Model-augmented safe reinforcement learning for Volt-VAR control in power distribution networks," Applied Energy, Elsevier, vol. 313(C).
- Niu, Yunbo & Wang, Jianzhou & Zhang, Ziyuan & Luo, Tianrui & Liu, Jingjiang, 2024. "De-Trend First, Attend Next: A Mid-Term PV forecasting system with attention mechanism and encoder–decoder structure," Applied Energy, Elsevier, vol. 353(PB).
- Arash Abyaz & Habib Panahi & Reza Zamani & Hassan Haes Alhelou & Pierluigi Siano & Miadreza Shafie-khah & Mimmo Parente, 2019. "An Effective Passive Islanding Detection Algorithm for Distributed Generations," Energies, MDPI, vol. 12(16), pages 1-19, August.
- Mak, Davye & Choeum, Daranith & Choi, Dae-Hyun, 2020. "Sensitivity analysis of volt-VAR optimization to data changes in distribution networks with distributed energy resources," Applied Energy, Elsevier, vol. 261(C).
- Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
- Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
- Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
- Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
- Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
- Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
- Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
- Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
- Huang, Songtao & Zhou, Qingguo & Shen, Jun & Zhou, Heng & Yong, Binbin, 2024. "Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting," Energy, Elsevier, vol. 290(C).
- Fei Zhang & Xiaoying Ren & Guidong Yang & Shulong Zhang & Yongqian Liu, 2024. "Optimization Method of Multi-Mode Model Predictive Control for Wind Farm Reactive Power," Energies, MDPI, vol. 17(6), pages 1-20, March.
More about this item
Keywords
Active distribution network (ADN); Combined central-local voltage control; Distributed generator (DG); Local control curve; Distributionally robust optimization (DRO);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011966. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.