IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222018011.html
   My bibliography  Save this article

Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows

Author

Listed:
  • Shaik, Saboor
  • Maduru, Venkata Ramana
  • Kirankumar, Gorantla
  • Arıcı, Müslüm
  • Ghosh, Aritra
  • Kontoleon, Karolos J.
  • Afzal, Asif

Abstract

This article explores optical and thermal characteristics of different colored stained glasses extensively found in historic religious architectures. Solar-optical and color rendering properties of glass samples were explored with spectrophotometry experimentally. Thermal analyses in cardinal and intercardinal orientations were performed to calculate the solar heat gains, building thermal loads, and daylight inflow through the stained glasses for different colored architectural antique stained glasses across two climatic zones (New-Delhi & Tiruchirappalli) of India for energy savings and daylight inflow. A numerical model verified using Design Builder simulations was used to conduct the thermo-economic analysis. Except for blood red and golden yellow samples, whose color rendering metrics (CRI) was below the minimum allowed level in the standard (80), the measured CRI of studied stained glass samples was in the range of 80.15–87.31. For temperate and hot climates, the Olive-green stained glass showed the highest heat gain reductions of 44.85% and 45.42%, respectively, as compared to clear glass. Building operational costs were 20–45% lower with various stained-glass systems compared to clear glass for both climatic conditions. Olive-green stained glass had the highest cost savings of 13.02$/m2, carbon emission mitigations of 0.89tCO2/year along with adequate daylight inflow to avoid artificial daylighting.

Suggested Citation

  • Shaik, Saboor & Maduru, Venkata Ramana & Kirankumar, Gorantla & Arıcı, Müslüm & Ghosh, Aritra & Kontoleon, Karolos J. & Afzal, Asif, 2022. "Space-age energy saving, carbon emission mitigation and color rendering perspective of architectural antique stained glass windows," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018011
    DOI: 10.1016/j.energy.2022.124898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    2. Yang, Zaoli & Ghadamyari, Mojtaba & Khorramdel, Hossein & Seyed Alizadeh, Seyed Mehdi & Pirouzi, Sasan & Milani, Muhammed & Banihashemi, Farzad & Ghadimi, Noradin, 2021. "Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
    4. Casini, Marco, 2018. "Active dynamic windows for buildings: A review," Renewable Energy, Elsevier, vol. 119(C), pages 923-934.
    5. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    2. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    3. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).
    4. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    5. Krarti, Moncef, 2023. "Optimal optical properties for smart glazed windows applied to residential buildings," Energy, Elsevier, vol. 278(PB).
    6. Mohammad Dabbagh & Moncef Krarti, 2021. "Optimal Control Strategies for Switchable Transparent Insulation Systems Applied to Smart Windows for US Residential Buildings," Energies, MDPI, vol. 14(10), pages 1-24, May.
    7. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    8. Pu, Jin Huan & Yu, Xiyu & Zhao, Yuewen & Tang, G.H. & Ren, Xingjie & Du, Mu, 2023. "Dynamic aerogel window with switchable solar transmittance and low haze," Energy, Elsevier, vol. 285(C).
    9. Krarti, Moncef, 2022. "Design optimization of smart glazing optical properties for office spaces," Applied Energy, Elsevier, vol. 308(C).
    10. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    11. Sadooghi, Parham & Kherani, Nazir P., 2019. "Influence of slat angle and low-emissive partitioning radiant energy veils on the thermal performance of multilayered windows for dynamic facades," Renewable Energy, Elsevier, vol. 143(C), pages 142-148.
    12. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    13. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    14. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    15. Ghosh, Aritra, 2023. "Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building," Energy, Elsevier, vol. 265(C).
    16. Wang, Chuyao & Li, Niansi & Gu, Tao & Ji, Jie & Yu, Bendong, 2022. "Design and performance investigation of a novel double-skin ventilated window integrated with air-purifying blind," Energy, Elsevier, vol. 254(PC).
    17. İsmail Hakkı Çavdar & Vahit Feryad, 2021. "Efficient Design of Energy Disaggregation Model with BERT-NILM Trained by AdaX Optimization Method for Smart Grid," Energies, MDPI, vol. 14(15), pages 1-21, July.
    18. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    19. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    20. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.