IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923004270.html
   My bibliography  Save this article

Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market

Author

Listed:
  • Zhang, Qian
  • Wu, Xiaohan
  • Deng, Xiaosong
  • Huang, Yaoyu
  • Li, Chunyan
  • Wu, Jiaqi

Abstract

Aiming at the problem of insufficient research on the interactions of various participants in energy and frequency regulation (FR) market that takes into account the participation of wind power (WP) and large-scale electric vehicles (EV), a bidding strategy for WP and large-scale EVs in day-ahead energy-FR market is proposed in this paper. Firstly, based on the analysis of the influence factors of the whole process EV behavior boundaries, a classification and aggregation method of EV cluster is proposed. Then, considering EV battery loss and wind power deviation penalty, a two-layer model is established. The upper layer is the bidding model of maximum revenue of wind power producer (WPP) and electric vehicle aggregator (EVA), and the lower layer is the clearing model with the lowest system operation cost for the power trading center. The competitive relationship between EVA and WPP is described based on Nash game. Finally, the simulated results show that the suggested classification and aggregation method can achieve fast and accurate solution of large-scale electric vehicles optimization model, and the independent bidding mode is more consistent with the optimal market operation compared with the price taker bidding mode and the collaborative bidding mode, which can protect the benefit for each participant.

Suggested Citation

  • Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004270
    DOI: 10.1016/j.apenergy.2023.121063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Xuemei & Li, Yaping & Zhang, Kaifeng & Feng, Wei, 2020. "A robust offering strategy for wind producers considering uncertainties of demand response and wind power," Applied Energy, Elsevier, vol. 279(C).
    2. Hongze Li & Xuejie Wang & Fengyun Li & Yuwei Wang & Xinhua Yu, 2018. "A Robust Day-Ahead Electricity Market Clearing Model Considering Wind Power Penetration," Energies, MDPI, vol. 11(7), pages 1-18, July.
    3. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    4. Shojaabadi, Saeed & Talavat, Vahid & Galvani, Sadjad, 2022. "A game theory-based price bidding strategy for electric vehicle aggregators in the presence of wind power producers," Renewable Energy, Elsevier, vol. 193(C), pages 407-417.
    5. Faddel, Samy & Aldeek, A. & Al-Awami, Ali T. & Sortomme, Eric & Al-Hamouz, Zakariya, 2018. "Ancillary Services Bidding for Uncertain Bidirectional V2G Using Fuzzy Linear Programming," Energy, Elsevier, vol. 160(C), pages 986-995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    2. Zhiwei Liao & Wenjuan Tao & Bowen Wang & Ye Liu, 2024. "Bidding Strategy for Wind and Thermal Power Joint Participation in the Electricity Spot Market Considering Uncertainty," Energies, MDPI, vol. 17(7), pages 1-19, April.
    3. Ju, Liwei & Bai, Xiping & Li, Gen & Gan, Wei & Qi, Xin & Ye, Fan, 2024. "Two-stage robust transaction optimization model and benefit allocation strategy for new energy power stations with shared energy storage considering green certificate and virtual energy storage mode," Applied Energy, Elsevier, vol. 362(C).
    4. Wang, Longze & Zhang, Yan & Li, Zhehan & Huang, Qiyu & Xiao, Yuxin & Yi, Xinxing & Ma, Yiyi & Li, Meicheng, 2023. "P2P trading mode for real-time coupled electricity and carbon markets based on a new indicator green energy," Energy, Elsevier, vol. 285(C).
    5. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness," Applied Energy, Elsevier, vol. 360(C).
    6. Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Ma, Ziyao & Huang, Jiajin, 2024. "Equilibrium configuration strategy of vehicle-to-grid-based electric vehicle charging stations in low-carbon resilient distribution networks," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Bingkang & Zhao, Huiru & Wang, Xuejie & Zhao, Yihang & Zhang, Yuanyuan & Lu, Hao & Wang, Yuwei, 2022. "Distributionally robust offering strategy of the aggregator integrating renewable energy generator and energy storage considering uncertainty and connections between the mid-to-long-term and spot elec," Renewable Energy, Elsevier, vol. 201(P1), pages 400-417.
    2. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    4. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    5. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    6. Zhiwei Liao & Wenjuan Tao & Bowen Wang & Ye Liu, 2024. "Bidding Strategy for Wind and Thermal Power Joint Participation in the Electricity Spot Market Considering Uncertainty," Energies, MDPI, vol. 17(7), pages 1-19, April.
    7. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    8. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    9. Pingkuo, Liu & Huan, Peng & Zhiwei, Wang, 2020. "Orderly-synergistic development of power generation industry: A China’s case study based on evolutionary game model," Energy, Elsevier, vol. 211(C).
    10. Cesar Diaz-Londono & José Vuelvas & Giambattista Gruosso & Carlos Adrian Correa-Florez, 2022. "Remuneration Sensitivity Analysis in Prosumer and Aggregator Strategies by Controlling Electric Vehicle Chargers," Energies, MDPI, vol. 15(19), pages 1-24, September.
    11. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    12. Olave-Rojas, David & Álvarez-Miranda, Eduardo, 2021. "Towards a complex investment evaluation framework for renewable energy systems: A 2-level heuristic approach," Energy, Elsevier, vol. 228(C).
    13. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    14. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    15. Nikpour, Ahmad & Nateghi, Abolfazl & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Day-ahead optimal bidding of microgrids considering uncertainties of price and renewable energy resources," Energy, Elsevier, vol. 227(C).
    16. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    17. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.
    18. Kuang, Zhonghong & Chen, Qi & Yu, Yang, 2022. "Assessing the CO2-emission risk due to wind-energy uncertainty," Applied Energy, Elsevier, vol. 310(C).
    19. Duan, Jiandong & Liu, Fan & Yang, Yao, 2022. "Optimal operation for integrated electricity and natural gas systems considering demand response uncertainties," Applied Energy, Elsevier, vol. 323(C).
    20. Khaloie, Hooman & Anvari-Moghaddam, Amjad & Contreras, Javier & Siano, Pierluigi, 2021. "Risk-involved optimal operating strategy of a hybrid power generation company: A mixed interval-CVaR model," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.