IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221007258.html
   My bibliography  Save this article

Day-ahead optimal bidding of microgrids considering uncertainties of price and renewable energy resources

Author

Listed:
  • Nikpour, Ahmad
  • Nateghi, Abolfazl
  • Shafie-khah, Miadreza
  • Catalão, João P.S.

Abstract

Unpredictable faults always reduce the stability and reliability of the electrical system. The increasing use of renewable energy sources (RES) in recent decades has exacerbated power system problems. Microgrids (MG) participation in Ancillary Services (AS) market is a suitable solution for the optimal performance of power systems in these conditions. MGs can also maximize their profits by participating in the AS market. In this paper, the optimal stochastic bidding strategy in joint energy and AS (regulation up and regulation down, spinning reserve and non-spinning reserve) market is modeled. Uncertainties of wind speed and solar radiation are modeled using Weibull and Beta probability distribution functions (PDFs) and probability of call AS is computed for all available AS. Therefore, the risk of the bidding strategy is controlled using conditional value at risk (CVaR). ERCOT market simulation has been carried out in order to determine the participation of each generator in all of the mentioned markets for different prices of energy and also to present the bidding curve, based on real-world data.

Suggested Citation

  • Nikpour, Ahmad & Nateghi, Abolfazl & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Day-ahead optimal bidding of microgrids considering uncertainties of price and renewable energy resources," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007258
    DOI: 10.1016/j.energy.2021.120476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dawoud, Samir M. & Lin, Xiangning & Okba, Merfat I., 2018. "Hybrid renewable microgrid optimization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2039-2052.
    2. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    3. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    4. Majzoobi, Alireza & Khodaei, Amin, 2017. "Application of microgrids in providing ancillary services to the utility grid," Energy, Elsevier, vol. 123(C), pages 555-563.
    5. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    6. Das, Saborni & Basu, Mousumi, 2020. "Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources," Energy, Elsevier, vol. 190(C).
    7. Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
    8. Fazlalipour, Pary & Ehsan, Mehdi & Mohammadi-Ivatloo, Behnam, 2019. "Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets," Energy, Elsevier, vol. 171(C), pages 689-700.
    9. Fueyo, Norberto & Sanz, Yosune & Rodrigues, Marcos & Montañés, Carlos & Dopazo, César, 2011. "The use of cost-generation curves for the analysis of wind electricity costs in Spain," Applied Energy, Elsevier, vol. 88(3), pages 733-740, March.
    10. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    11. Samimi, Abouzar & Nikzad, Mehdi & Siano, Pierluigi, 2017. "Scenario-based stochastic framework for coupled active and reactive power market in smart distribution systems with demand response programs," Renewable Energy, Elsevier, vol. 109(C), pages 22-40.
    12. Shams, Mohammad H. & Shahabi, Majid & Kia, Mohsen & Heidari, Alireza & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Optimal operation of electrical and thermal resources in microgrids with energy hubs considering uncertainties," Energy, Elsevier, vol. 187(C).
    13. Kwon, Kyung-bin & Kim, Dam, 2020. "Enhanced method for considering energy storage systems as ancillary service resources in stochastic unit commitment," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Aparna & Palepu, Sai, 2024. "Designing risk-free service for renewable wind and solar resources," European Journal of Operational Research, Elsevier, vol. 315(2), pages 715-728.
    2. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
    3. Shafiekhani, Morteza & Ahmadi, Abdollah & Homaee, Omid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads," Energy, Elsevier, vol. 239(PD).
    4. Dong, Jizhe & Han, Shunjie & Shao, Xiangxin & Tang, Like & Chen, Renhui & Wu, Longfei & Zheng, Cunlong & Li, Zonghao & Li, Haolin, 2021. "Day-ahead wind-thermal unit commitment considering historical virtual wind power data," Energy, Elsevier, vol. 235(C).
    5. Liu, Zhouding & Nazari-Heris, Morteza, 2023. "Optimal bidding strategy of multi-carrier systems in electricity markets using information gap decision theory," Energy, Elsevier, vol. 280(C).
    6. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing, 2022. "A model for balance responsible distribution systems with energy storage to achieve coordinated load shifting and uncertainty mitigation," Energy, Elsevier, vol. 249(C).
    7. Zandrazavi, Seyed Farhad & Guzman, Cindy Paola & Pozos, Alejandra Tabares & Quiros-Tortos, Jairo & Franco, John Fredy, 2022. "Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles," Energy, Elsevier, vol. 241(C).
    8. Guo, Hongye & Chen, Qixin & Shahidehpour, Mohammad & Xia, Qing & Kang, Chongqing, 2022. "Bidding behaviors of GENCOs under bounded rationality with renewable energy," Energy, Elsevier, vol. 250(C).
    9. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).
    10. Li, Bei & Li, Jiangchen, 2021. "Probabilistic sizing of a low-carbon emission power system considering HVDC transmission and microgrid clusters," Applied Energy, Elsevier, vol. 304(C).
    11. Nasiri, Nima & Zeynali, Saeed & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2021. "A hybrid robust-stochastic approach for strategic scheduling of a multi-energy system as a price-maker player in day-ahead wholesale market," Energy, Elsevier, vol. 235(C).
    12. Zhou, Dequn & Zhang, Yining & Wang, Qunwei & Ding, Hao, 2024. "How do uncertain renewable energy induced risks evolve in a two-stage deregulated wholesale power market," Applied Energy, Elsevier, vol. 353(PB).
    13. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Optimal energy management of integrated energy systems for strategic participation in competitive electricity markets," Energy, Elsevier, vol. 278(PA).
    14. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
    2. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    3. Gupta, Aparna & Palepu, Sai, 2024. "Designing risk-free service for renewable wind and solar resources," European Journal of Operational Research, Elsevier, vol. 315(2), pages 715-728.
    4. Das, Saborni & Basu, Mousumi, 2020. "Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources," Energy, Elsevier, vol. 190(C).
    5. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Optimal energy management of integrated energy systems for strategic participation in competitive electricity markets," Energy, Elsevier, vol. 278(PA).
    6. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    7. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    8. Jun Dong & Yuanyuan Wang & Xihao Dou & Zhengpeng Chen & Yaoyu Zhang & Yao Liu, 2021. "Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    9. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    10. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).
    11. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    12. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    13. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    15. Guo, Hongye & Chen, Qixin & Shahidehpour, Mohammad & Xia, Qing & Kang, Chongqing, 2022. "Bidding behaviors of GENCOs under bounded rationality with renewable energy," Energy, Elsevier, vol. 250(C).
    16. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    17. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2021. "Uncertainty analysis of the impact of increasing levels of gas and electricity network integration and storage on Techno-Economic-Environmental performance," Energy, Elsevier, vol. 222(C).
    18. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    19. Sun, Lingling & Qiu, Jing & Han, Xiao & Dong, Zhao Yang, 2021. "Energy sharing platform based on call auction method with the maximum transaction volume," Energy, Elsevier, vol. 225(C).
    20. Fernando J. Lanas & Francisco J. Martínez-Conde & Diego Alvarado & Rodrigo Moreno & Patricio Mendoza-Araya & Guillermo Jiménez-Estévez, 2020. "Non-Strategic Capacity Withholding from Distributed Energy Storage within Microgrids Providing Energy and Reserve Services," Energies, MDPI, vol. 13(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.