IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019743.html
   My bibliography  Save this article

Pricing balancing ancillary services for low-inertia power systems under uncertainty and nonconvexity

Author

Listed:
  • Li, Zhihao
  • Xu, Yinliang

Abstract

In renewable-rich power systems, declining rotational inertia and unpredictable power fluctuations make the system vulnerable to contingencies. Recently, this issue has garnered significant attention in practice and academia, aiming to enhance power system reliability through market mechanisms. This paper proposes a day-ahead joint market that integrates energy, reserve, inertia, and frequency response services. A frequency-constrained unit commitment (UC) model is developed employing a distributionally robust chance-constrained (DRCC) approach to account for the uncertainties in wind farm outputs. Additionally, a convex hull pricing (CHP) model is introduced to minimize uplift payments associated with the nonconvex nature of commitment variables. Case studies conducted on a 5-bus and a 118-bus power system demonstrate the efficacy of the proposed market design in reducing operational costs and promoting renewable energy utilization. Furthermore, the results highlight the effectiveness of the CHP model in minimizing the uplifts and enhancing market transparency.

Suggested Citation

  • Li, Zhihao & Xu, Yinliang, 2025. "Pricing balancing ancillary services for low-inertia power systems under uncertainty and nonconvexity," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019743
    DOI: 10.1016/j.apenergy.2024.124591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
    2. Shi, Jiantao & Guo, Ye & Wu, Wenchuan & Sun, Hongbin, 2024. "Scenario-oriented multi-area joint market clearing of energy and reserve under uncertainty," Applied Energy, Elsevier, vol. 361(C).
    3. O'Neill, Richard P. & Sotkiewicz, Paul M. & Hobbs, Benjamin F. & Rothkopf, Michael H. & Stewart, William R., 2005. "Efficient market-clearing prices in markets with nonconvexities," European Journal of Operational Research, Elsevier, vol. 164(1), pages 269-285, July.
    4. Maluenda, Martín & Córdova, Samuel & Lorca, Álvaro & Negrete-Pincetic, Matías, 2023. "Optimal operation scheduling of a PV-BESS-Electrolyzer system for hydrogen production and frequency regulation," Applied Energy, Elsevier, vol. 344(C).
    5. Jiang, Boyou & Guo, Chuangxin & Chen, Zhe, 2024. "Frequency constrained unit commitment considering reserve provision of wind power," Applied Energy, Elsevier, vol. 361(C).
    6. Li, Zhihao & Yang, Lun & Xu, Yinliang, 2023. "A dynamics-constrained method for distributed frequency regulation in low-inertia power systems," Applied Energy, Elsevier, vol. 344(C).
    7. Shi, Jiantao & Guo, Ye & Shen, Xinwei & Wu, Wenchuan & Sun, Hongbin, 2024. "Multi-interval rolling-window joint dispatch and pricing of energy and reserve under uncertainty," Applied Energy, Elsevier, vol. 356(C).
    8. Liu, Xin & Li, Yang & Lin, Xueshan & Guo, Jiqun & Shi, Yunpeng & Shen, Yunwei, 2022. "Dynamic bidding strategy for a demand response aggregator in the frequency regulation market," Applied Energy, Elsevier, vol. 314(C).
    9. Sun, Xiaotian & Xie, Haipeng & Qiu, Dawei & Xiao, Yunpeng & Bie, Zhaohong & Strbac, Goran, 2023. "Decentralized frequency regulation service provision for virtual power plants: A best response potential game approach," Applied Energy, Elsevier, vol. 352(C).
    10. Qiu, Dawei & Baig, Aimon Mirza & Wang, Yi & Wang, Lingling & Jiang, Chuanwen & Strbac, Goran, 2024. "Market design for ancillary service provisions of inertia and frequency response via virtual power plants: A non-convex bi-level optimisation approach," Applied Energy, Elsevier, vol. 361(C).
    11. Ma, Qianli & Wei, Wei & Mei, Shengwei, 2024. "Health-aware coordinate long-term and short-term operation for BESS in energy and frequency regulation markets," Applied Energy, Elsevier, vol. 356(C).
    12. Brooks, Adria E. & Lesieutre, Bernard C., 2022. "A locational marginal price for frequency balancing operations in regulation markets," Applied Energy, Elsevier, vol. 308(C).
    13. Badesa, L. & Teng, F. & Strbac, G., 2020. "Pricing inertia and Frequency Response with diverse dynamics in a Mixed-Integer Second-Order Cone Programming formulation," Applied Energy, Elsevier, vol. 260(C).
    14. Zhang, Tengxi & Xin, Li & Wang, Shunjiang & Guo, Ren & Wang, Wentao & Cui, Jia & Wang, Peng, 2024. "A novel approach of energy and reserve scheduling for hybrid power systems: Frequency security constraints," Applied Energy, Elsevier, vol. 361(C).
    15. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
    16. Klyve, Øyvind Sommer & Klæboe, Gro & Nygård, Magnus Moe & Marstein, Erik Stensrud, 2023. "Limiting imbalance settlement costs from variable renewable energy sources in the Nordics: Internal balancing vs. balancing market participation," Applied Energy, Elsevier, vol. 350(C).
    17. G. C. Calafiore & L. El Ghaoui, 2006. "On Distributionally Robust Chance-Constrained Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 130(1), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian, Oliva H. & Carlos, Bahamonde D., 2024. "Trade-off between frequency stability and renewable generation – Studying virtual inertia from solar PV and operating stability constraints," Renewable Energy, Elsevier, vol. 232(C).
    2. Fang, Xin & Cui, Hantao & Du, Ershun & Li, Fangxing & Kang, Chongqing, 2021. "Characteristics of locational uncertainty marginal price for correlated uncertainties of variable renewable generation and demands," Applied Energy, Elsevier, vol. 282(PA).
    3. Qiu, Dawei & Baig, Aimon Mirza & Wang, Yi & Wang, Lingling & Jiang, Chuanwen & Strbac, Goran, 2024. "Market design for ancillary service provisions of inertia and frequency response via virtual power plants: A non-convex bi-level optimisation approach," Applied Energy, Elsevier, vol. 361(C).
    4. Ruan, Yimin & Yao, Wei & Zong, Qihang & Zhou, Hongyu & Gan, Wei & Zhang, Xinhao & Li, Shaolin & Wen, Jinyu, 2025. "Online assessment of frequency support capability of the DFIG-based wind farm using a knowledge and data-driven fusion Koopman method," Applied Energy, Elsevier, vol. 377(PB).
    5. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    6. Araoz, Veronica & Jörnsten, Kurt, 2011. "Semi-Lagrangean approach for price discovery in markets with non-convexities," European Journal of Operational Research, Elsevier, vol. 214(2), pages 411-417, October.
    7. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    8. McKelvey, Bill & Wycisk, Christine & Hülsmann, Michael, 2009. "Designing an electronic auction market for complex 'smart parts' logistics: Options based on LeBaron's computational stock market," International Journal of Production Economics, Elsevier, vol. 120(2), pages 476-494, August.
    9. Engstam, Linus & Janke, Leandro & Sundberg, Cecilia & Nordberg, Åke, 2025. "Optimising power-to-gas integration with wastewater treatment and biogas: A techno-economic assessment of CO2 and by-product utilisation," Applied Energy, Elsevier, vol. 377(PB).
    10. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    11. Richard O’Neill & Emily Fisher & Benjamin Hobbs & Ross Baldick, 2008. "Towards a complete real-time electricity market design," Journal of Regulatory Economics, Springer, vol. 34(3), pages 220-250, December.
    12. Camelo, Sergio & Papavasiliou, Anthony & de Castro, Luciano & Riascos, Álvaro & Oren, Shmuel, 2018. "A structural model to evaluate the transition from self-commitment to centralized unit commitment," Energy Economics, Elsevier, vol. 75(C), pages 560-572.
    13. Calafiore, Giuseppe Carlo & Parino, Francesco & Zino, Lorenzo & Rizzo, Alessandro, 2023. "Dynamic planning of a two-dose vaccination campaign with uncertain supplies," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1269-1278.
    14. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    15. Neuhoff, Karsten & Barquin, Julian & Bialek, Janusz W. & Boyd, Rodney & Dent, Chris J. & Echavarren, Francisco & Grau, Thilo & von Hirschhausen, Christian & Hobbs, Benjamin F. & Kunz, Friedrich & Nabe, 2013. "Renewable electric energy integration: Quantifying the value of design of markets for international transmission capacity," Energy Economics, Elsevier, vol. 40(C), pages 760-772.
    16. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    17. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    18. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    19. Hassan Shavandi & Mehrdad Pirnia & J. David Fuller, 2018. "Extended opportunity cost model to find near equilibrium electricity prices under non-convexities," Papers 1809.09734, arXiv.org.
    20. Martin Bichler & Johannes Knörr & Felipe Maldonado, 2023. "Pricing in Nonconvex Markets: How to Price Electricity in the Presence of Demand Response," Information Systems Research, INFORMS, vol. 34(2), pages 652-675, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.