IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924001739.html
   My bibliography  Save this article

Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness

Author

Listed:
  • Zhang, Kaizhe
  • Xu, Yinliang
  • Sun, Hongbin

Abstract

With the popularity of electric vehicles (EVs) in urban areas, the effective utilization of their charging flexibility in active distribution networks (ADNs) has drawn wide attentions. This paper proposes a bilevel model for the collaborative operation of ADNs with multiple charging stations (CSs) considering EV drivers' willingness. In the upper level, the distribution system operator (DSO) minimizes the total operational cost of ADNs and sets the optimal energy and reserve prices to trade with CSs under loads and market uncertainties. In the lower level, the aggregated model of EVs including drivers' response willingness is firstly established. Then, CSs minimize their own costs by adjusting bidding quantities and setting optimal incentive prices for EV drivers. Further, the developed bilevel model considering responsivities of EV drivers and various uncertainties is transformed into a tractable single level problem via the deterministic reformulation, Karush-Kuhn–Tucker (KKT) conditions and linearization method. Finally, numerical studies show that the proposed method can facilitate the DSO, CSs, EV drivers to reduce 3.7%, 20%, 9.6% total costs on average and improve the network security of ADNs under various uncertainties. Moreover, the scalability of the proposed approach is verified in the IEEE 123-bus DN with the computation time less than 600 s, which satisfies the computational efficiency requirement for the ADN day-ahead optimal scheduling.

Suggested Citation

  • Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001739
    DOI: 10.1016/j.apenergy.2024.122790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924001739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
    2. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    3. Zhang, Shida & Ge, Shaoyun & Liu, Hong & Zhao, Bo & Ni, Chouwei & Hou, Guocheng & Wang, Chengshan, 2024. "Region-based flexibility quantification in distribution systems: An analytical approach considering spatio-temporal coupling," Applied Energy, Elsevier, vol. 355(C).
    4. Zhang, XiaoWei & Yu, Xiaoping & Ye, Xinping & Pirouzi, Sasan, 2023. "Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method," Energy, Elsevier, vol. 278(PB).
    5. Faqiry, M. Nazif & Edmonds, Lawryn & Wu, Hongyu & Pahwa, Anil, 2020. "Distribution locational marginal price-based transactive day-ahead market with variable renewable generation," Applied Energy, Elsevier, vol. 259(C).
    6. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    7. Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
    8. Akbari, Ehsan & Mousavi Shabestari, Seyed Farzin & Pirouzi, Sasan & Jadidoleslam, Morteza, 2023. "Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management," Renewable Energy, Elsevier, vol. 206(C), pages 295-308.
    9. Wu, Chuantao & Chen, Cen & Ma, Yuncong & Li, Feiyu & Sui, Quan & Lin, Xiangning & Wei, Fanrong & Li, Zhengtian, 2022. "Enhancing resilient restoration of distribution systems utilizing electric vehicles and supporting incentive mechanism," Applied Energy, Elsevier, vol. 322(C).
    10. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    11. Norouzi, Mohammadali & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Fotuhi-Firuzabad, Mahmud, 2022. "Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    2. Liang, Hejun & Pirouzi, Sasan, 2024. "Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources," Energy, Elsevier, vol. 293(C).
    3. Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).
    4. Yubo Wang & Weiqing Sun, 2024. "A Two-Stage Robust Pricing Strategy for Electric Vehicle Aggregators Considering Dual Uncertainty in Electricity Demand and Real-Time Electricity Prices," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    5. Menghwar, Mohan & Yan, Jie & Chi, Yongning & Asim Amin, M. & Liu, Yongqian, 2024. "A market-based real-time algorithm for congestion alleviation incorporating EV demand response in active distribution networks," Applied Energy, Elsevier, vol. 356(C).
    6. Meng, Lingzhuochao & Yang, Xiyun & Zhu, Jiang & Wang, Xinzhe & Meng, Xin, 2024. "Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty," Applied Energy, Elsevier, vol. 362(C).
    7. Xiang, Shizhe & Xu, Da & Wang, Pengda & Bai, Ziyi & Zeng, Lingxiong, 2024. "Optimal expansion planning of 5G and distribution systems considering source-network-load-storage coordination," Applied Energy, Elsevier, vol. 366(C).
    8. Bu, Yuntao & Yu, Hao & Ji, Haoran & Song, Guanyu & Xu, Jing & Li, Juan & Zhao, Jinli & Li, Peng, 2024. "Hybrid data-driven operation method for demand response of community integrated energy systems utilizing virtual and physical energy storage," Applied Energy, Elsevier, vol. 366(C).
    9. Xie, Haonan & Goh, Hui Hwang & Zhang, Dongdong & Sun, Hui & Dai, Wei & Kurniawan, Tonni Agustiono & Dennis Wong, M.L. & Teo, Kenneth Tze Kin & Goh, Kai Chen, 2024. "Eco-Energetical analysis of circular economy and community-based virtual power plants (CE-cVPP): A systems engineering-engaged life cycle assessment (SE-LCA) method for sustainable renewable energy de," Applied Energy, Elsevier, vol. 365(C).
    10. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    11. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    12. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    13. Zhiwei Liao & Wenjuan Tao & Bowen Wang & Ye Liu, 2024. "Bidding Strategy for Wind and Thermal Power Joint Participation in the Electricity Spot Market Considering Uncertainty," Energies, MDPI, vol. 17(7), pages 1-19, April.
    14. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    15. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    16. Zhang, Y.Q. & Chen, J.J. & Wang, Y.X. & Feng, L., 2024. "Enhancing resilience of agricultural microgrid through electricity–heat–water based multi-energy hub considering irradiation intensity uncertainty," Renewable Energy, Elsevier, vol. 220(C).
    17. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    18. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    20. Ju, Liwei & Bai, Xiping & Li, Gen & Gan, Wei & Qi, Xin & Ye, Fan, 2024. "Two-stage robust transaction optimization model and benefit allocation strategy for new energy power stations with shared energy storage considering green certificate and virtual energy storage mode," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.