IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1714-d1369530.html
   My bibliography  Save this article

Bidding Strategy for Wind and Thermal Power Joint Participation in the Electricity Spot Market Considering Uncertainty

Author

Listed:
  • Zhiwei Liao

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

  • Wenjuan Tao

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

  • Bowen Wang

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

  • Ye Liu

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

Abstract

As the proportion of new energy sources, such as wind power, in the electricity system rapidly increases, their participation in spot market competition has become an inevitable trend. However, the uncertainty of clearing price and wind power output will lead to bidding deviation and bring revenue risks. In response to this, a bidding strategy is proposed for wind farms to participate in the spot market jointly with carbon capture power plants (CCPP) that have flexible regulation capabilities. First, a two-stage decision model is constructed in the day-ahead market and real-time balancing market. Under the joint bidding mode, CCPP can help alleviate wind power output deviations, thereby reducing real-time imbalanced power settlement. On this basis, a tiered carbon trading mechanism is introduced to optimize day-ahead bidding, aiming at maximizing revenue in both the electricity spot market and carbon trading market. Secondly, conditional value at risk (CVaR) is introduced to quantitatively assess the risks posed by uncertainties in the two-stage decision model, and the risk aversion coefficient is used to represent the decision-maker’s risk preference, providing corresponding strategies. The model is transformed into a mixed-integer linear programming model using piecewise linearization and McCormick enveloping. Finally, the effectiveness of the proposed model and methods is verified through numerical examples.

Suggested Citation

  • Zhiwei Liao & Wenjuan Tao & Bowen Wang & Ye Liu, 2024. "Bidding Strategy for Wind and Thermal Power Joint Participation in the Electricity Spot Market Considering Uncertainty," Energies, MDPI, vol. 17(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1714-:d:1369530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1714/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1714/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
    2. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    2. Ying-Yi Hong & Gerard Francesco DG. Apolinario, 2021. "Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications," Energies, MDPI, vol. 14(20), pages 1-47, October.
    3. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    4. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    5. Pingkuo, Liu & Huan, Peng & Zhiwei, Wang, 2020. "Orderly-synergistic development of power generation industry: A China’s case study based on evolutionary game model," Energy, Elsevier, vol. 211(C).
    6. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    7. Olave-Rojas, David & Álvarez-Miranda, Eduardo, 2021. "Towards a complex investment evaluation framework for renewable energy systems: A 2-level heuristic approach," Energy, Elsevier, vol. 228(C).
    8. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2022. "Strategic bidding of an energy storage agent in a joint energy and reserve market under stochastic generation," Energy, Elsevier, vol. 242(C).
    9. Ju, Liwei & Bai, Xiping & Li, Gen & Gan, Wei & Qi, Xin & Ye, Fan, 2024. "Two-stage robust transaction optimization model and benefit allocation strategy for new energy power stations with shared energy storage considering green certificate and virtual energy storage mode," Applied Energy, Elsevier, vol. 362(C).
    10. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Liu, Yu & Wu, Chuanshen & Wang, Sicheng, 2021. "Congestion-aware robust security constrained unit commitment model for AC-DC grids," Applied Energy, Elsevier, vol. 304(C).
    12. Feng, Wenxiu, 2024. "Predictive day-ahead offering for renewable generators in uncertain spot and balancing markets," DES - Working Papers. Statistics and Econometrics. WS 44216, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Li, Mo & Yang, Yi & Smith, Timothy M. & Wilson, Elizabeth J., 2020. "Wind can reduce storage-induced emissions at grid scales," Applied Energy, Elsevier, vol. 276(C).
    14. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    15. Nikpour, Ahmad & Nateghi, Abolfazl & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Day-ahead optimal bidding of microgrids considering uncertainties of price and renewable energy resources," Energy, Elsevier, vol. 227(C).
    16. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    17. Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty," Applied Energy, Elsevier, vol. 356(C).
    18. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    19. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.
    20. Fragiacomo, Petronilla & Lucarelli, Giuseppe & Genovese, Matteo & Florio, Gaetano, 2021. "Multi-objective optimization model for fuel cell-based poly-generation energy systems," Energy, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1714-:d:1369530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.