IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v336y2023ics0306261923001563.html
   My bibliography  Save this article

Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting

Author

Listed:
  • Li, Yanhong
  • Guo, Ziting
  • Zhao, Zhihao
  • Gao, Yikui
  • Yang, Peiyuan
  • Qiao, Wenyan
  • Zhou, Linglin
  • Wang, Jie
  • Wang, Zhong Lin

Abstract

As one of the promising renewable and clean energy sources, water waves have attracted intensive attention and are expected to convert into electricity to alleviate energy demand. The emergence of triboelectric nanogenerator (TENG) provides a new idea for harvesting and utilizing this low-frequency and random energy, but the low output performance of TENG hinders its widespread application. In this work, an effective strategy that combines multi-layered structure design and external circuit optimization is proposed to efficiently scavenge the water wave energy. Consequently, an average power density up to 27.8 W m−3 Hz−1 (corresponding output power: 194.5 μW) has been achieved on the multi-layered TENG. Meanwhile, this strategy also demonstrated that the average power density can be effectively improve to almost 9 times that of the multi-layered TENG without external circuit when triggered by water wave. This work not only provides an efficient strategy for harvesting water wave energy, but also lays a foundation for advancing the practical application of TENG in renewable and clean energy.

Suggested Citation

  • Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
  • Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001563
    DOI: 10.1016/j.apenergy.2023.120792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huamei Wang & Liang Xu & Yu Bai & Zhong Lin Wang, 2020. "Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. Paul C. Stern & Benjamin K. Sovacool & Thomas Dietz, 2016. "Towards a science of climate and energy choices," Nature Climate Change, Nature, vol. 6(6), pages 547-555, June.
    3. Yunlong Zi & Simiao Niu & Jie Wang & Zhen Wen & Wei Tang & Zhong Lin Wang, 2015. "Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    4. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    5. Wang, Wen-Quan & Li, Weizhong & Yan, Yan & Zhang, Jianmin, 2022. "Parametric study on the propulsion and energy harvesting performance of a pitching foil hanging under a wave glider," Renewable Energy, Elsevier, vol. 184(C), pages 830-844.
    6. Wenlin Liu & Zhao Wang & Gao Wang & Guanlin Liu & Jie Chen & Xianjie Pu & Yi Xi & Xue Wang & Hengyu Guo & Chenguo Hu & Zhong Lin Wang, 2019. "Integrated charge excitation triboelectric nanogenerator," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Li Cheng & Qi Xu & Youbin Zheng & Xiaofeng Jia & Yong Qin, 2018. "A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    9. Jie Wang & Changsheng Wu & Yejing Dai & Zhihao Zhao & Aurelia Wang & Tiejun Zhang & Zhong Lin Wang, 2017. "Achieving ultrahigh triboelectric charge density for efficient energy harvesting," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    10. Zhong Lin Wang, 2017. "Catch wave power in floating nets," Nature, Nature, vol. 542(7640), pages 159-160, February.
    11. Paul C. Stern & Kathryn B. Janda & Marilyn A. Brown & Linda Steg & Edward L. Vine & Loren Lutzenhiser, 2016. "Opportunities and insights for reducing fossil fuel consumption by households and organizations," Nature Energy, Nature, vol. 1(5), pages 1-6, May.
    12. Jun Chen & Yi Huang & Nannan Zhang & Haiyang Zou & Ruiyuan Liu & Changyuan Tao & Xing Fan & Zhong Lin Wang, 2016. "Micro-cable structured textile for simultaneously harvesting solar and mechanical energy," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    13. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jiacheng & Yu, Yang & Li, Hengyu & Zhu, Mingkang & Zhang, Sheng & Gu, Chengjie & Jiang, Lin & Wang, Zhong Lin & Zhu, Jianyang & Cheng, Tinghai, 2024. "Triboelectric-electromagnetic hybrid generator with Savonius flapping wing for low-velocity water flow energy harvesting," Applied Energy, Elsevier, vol. 357(C).
    2. Pang, Yafeng & Zhu, Xingyi & Jin, Yiyang & Yang, Zichao & Liu, Shuainian & Shen, Lingjie & Li, Xinhong & Lee, Chengkuo, 2023. "Textile-inspired triboelectric nanogenerator as intelligent pavement energy harvester and self-powered skid resistance sensor," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    3. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    5. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Ze-Qi Lu & Long Zhao & Hai-Ling Fu & Eric Yeatman & Hu Ding & Li-Qun Chen, 2024. "Ocean wave energy harvesting with high energy density and self-powered monitoring system," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Yupeng Mao & Yongsheng Zhu & Tianming Zhao & Changjun Jia & Xiao Wang & Qi Wang, 2021. "Portable Mobile Gait Monitor System Based on Triboelectric Nanogenerator for Monitoring Gait and Powering Electronics," Energies, MDPI, vol. 14(16), pages 1-12, August.
    8. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Dae Sol Kong & Jae Yeon Han & Young Joon Ko & Sang Hyeok Park & Minbaek Lee & Jong Hoon Jung, 2021. "A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting," Energies, MDPI, vol. 14(4), pages 1-10, February.
    10. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Zhao, Chaoyang & Yang, Yaowen & Upadrashta, Deepesh & Zhao, Liya, 2021. "Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester," Energy, Elsevier, vol. 214(C).
    12. Jiaqi Li & Jie Chen & Hengyu Guo, 2021. "Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives," Energies, MDPI, vol. 14(21), pages 1-18, October.
    13. Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    15. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    16. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    17. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    18. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    19. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    20. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.