IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33766-z.html
   My bibliography  Save this article

Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown

Author

Listed:
  • Di Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Linglin Zhou

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shengnan Cui

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yikui Gao

    (Chinese Academy of Sciences)

  • Shaoxin Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhihao Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhiying Yi

    (Chinese Academy of Sciences)

  • Haiyang Zou

    (Georgia Institute of Technology)

  • Youjun Fan

    (Tsinghua University)

  • Jie Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhong Lin Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Georgia Institute of Technology)

Abstract

Triboelectric charge density and energy density are two crucial factors to assess the output capability of dielectric materials in a triboelectric nanogenerator (TENG). However, they are commonly limited by the breakdown effect, structural parameters, and environmental factors, failing to reflect the intrinsic triboelectric behavior of these materials. Moreover, a standardized strategy for quantifying their maximum values is needed. Here, by circumventing these limitations, we propose a standardized strategy employing a contact-separation TENG for assessing a dielectric material’s maximum triboelectric charge and energy densities based on both theoretical analyses and experimental results. We find that a material’s vacuum triboelectric charge density can be far higher than previously reported values, reaching a record-high of 1250 µC m−2 between polyvinyl chloride and copper. More importantly, the obtained values for a dielectric material through this method represent its intrinsic properties and correlates with its work function. This study provides a fundamental methodology for quantifying the triboelectric capability of dielectric materials and further highlights TENG’s promising applications for energy harvesting.

Suggested Citation

  • Di Liu & Linglin Zhou & Shengnan Cui & Yikui Gao & Shaoxin Li & Zhihao Zhao & Zhiying Yi & Haiyang Zou & Youjun Fan & Jie Wang & Zhong Lin Wang, 2022. "Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33766-z
    DOI: 10.1038/s41467-022-33766-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33766-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33766-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wanghuai Xu & Huanxi Zheng & Yuan Liu & Xiaofeng Zhou & Chao Zhang & Yuxin Song & Xu Deng & Michael Leung & Zhengbao Yang & Ronald X. Xu & Zhong Lin Wang & Xiao Cheng Zeng & Zuankai Wang, 2020. "A droplet-based electricity generator with high instantaneous power density," Nature, Nature, vol. 578(7795), pages 392-396, February.
    2. Yunlong Zi & Jie Wang & Sihong Wang & Shengming Li & Zhen Wen & Hengyu Guo & Zhong Lin Wang, 2016. "Effective energy storage from a triboelectric nanogenerator," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    3. Zhihao Zhao & Linglin Zhou & Shaoxin Li & Di Liu & Yanhong Li & Yikui Gao & Yuebo Liu & Yejing Dai & Jie Wang & Zhong Lin Wang, 2021. "Selection rules of triboelectric materials for direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Haiyang Zou & Ying Zhang & Litong Guo & Peihong Wang & Xu He & Guozhang Dai & Haiwu Zheng & Chaoyu Chen & Aurelia Chi Wang & Cheng Xu & Zhong Lin Wang, 2019. "Quantifying the triboelectric series," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    5. Hao Wu & Steven Wang & Zuankai Wang & Yunlong Zi, 2021. "Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG)," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Jie Wang & Shengming Li & Fang Yi & Yunlong Zi & Jun Lin & Xiaofeng Wang & Youlong Xu & Zhong Lin Wang, 2016. "Sustainably powering wearable electronics solely by biomechanical energy," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    7. Xin Xia & Jingjing Fu & Yunlong Zi, 2019. "A universal standardized method for output capability assessment of nanogenerators," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Jinsung Chun & Byeong Uk Ye & Jae Won Lee & Dukhyun Choi & Chong-Yun Kang & Sang-Woo Kim & Zhong Lin Wang & Jeong Min Baik, 2016. "Boosted output performance of triboelectric nanogenerator via electric double layer effect," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    9. Jie Wang & Changsheng Wu & Yejing Dai & Zhihao Zhao & Aurelia Wang & Tiejun Zhang & Zhong Lin Wang, 2017. "Achieving ultrahigh triboelectric charge density for efficient energy harvesting," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Xiang Li & Roujuan Li & Shaoxin Li & Zhong Lin Wang & Di Wei, 2024. "Triboiontronics with temporal control of electrical double layer formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Zhou, Han & Liu, Guoxu & Bu, Tianzhao & Wang, Zheng & Cao, Jie & Wang, Zhaozheng & Zhang, Zhi & Dong, Sicheng & Zeng, Jianhua & Cao, Xiaoxin & Zhang, Chi, 2024. "Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator," Applied Energy, Elsevier, vol. 357(C).
    6. Zhaoqi Liu & Yunzhi Huang & Yuxiang Shi & Xinglin Tao & Hezhi He & Feida Chen & Zhao-Xia Huang & Zhong Lin Wang & Xiangyu Chen & Jin-Ping Qu, 2022. "Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Yawei Wang & Hengxu Du & Hengyi Yang & Ziyue Xi & Cong Zhao & Zian Qian & Xinyuan Chuai & Xuzhang Peng & Hongyong Yu & Yu Zhang & Xin Li & Guobiao Hu & Hao Wang & Minyi Xu, 2024. "A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Geon Lee & Hyunjung Kang & Jooyeong Yun & Dongwoo Chae & Minsu Jeong & Minseo Jeong & Dasol Lee & Miso Kim & Heon Lee & Junsuk Rho, 2024. "Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Chaojie Chen & Shilong Zhao & Caofeng Pan & Yunlong Zi & Fangcheng Wang & Cheng Yang & Zhong Lin Wang, 2022. "A method for quantitatively separating the piezoelectric component from the as-received “Piezoelectric” signal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    11. Yunlong Xu & Zhongda Sun & Zhiqing Bai & Hua Shen & Run Wen & Fumei Wang & Guangbiao Xu & Chengkuo Lee, 2024. "Bionic e-skin with precise multi-directional droplet sliding sensing for enhanced robotic perception," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).
    13. Yang, Xin & Lai, Siu-Kai & Wang, Chen & Wang, Jia-Mei & Ding, Hu, 2022. "On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations," Energy, Elsevier, vol. 252(C).
    14. Huiyuan Wu & Chuncai Shan & Shaoke Fu & Kaixian Li & Jian Wang & Shuyan Xu & Gui Li & Qionghua Zhao & Hengyu Guo & Chenguo Hu, 2024. "Efficient energy conversion mechanism and energy storage strategy for triboelectric nanogenerators," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Chichu Qin & Dong Wang & Yumin Liu & Pengkun Yang & Tian Xie & Lu Huang & Haiyan Zou & Guanwu Li & Yingpeng Wu, 2021. "Tribo-electrochemistry induced artificial solid electrolyte interface by self-catalysis," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Thanh Ha Nguyen & Kyoung Kwan Ahn, 2023. "The Effect of a Magnetic Field on Solid–Liquid Contact Electrification for Streaming Flow Energy Harvesting," Energies, MDPI, vol. 16(12), pages 1-11, June.
    17. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    18. Yi Li & Yi Luo & Song Xiao & Cheng Zhang & Cheng Pan & Fuping Zeng & Zhaolun Cui & Bangdou Huang & Ju Tang & Tao Shao & Xiaoxing Zhang & Jiaqing Xiong & Zhong Lin Wang, 2024. "Visualization and standardized quantification of surface charge density for triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Zehua Peng & Jihong Shi & Xiao Xiao & Ying Hong & Xuemu Li & Weiwei Zhang & Yongliang Cheng & Zuankai Wang & Wen Jung Li & Jun Chen & Michael K. H. Leung & Zhengbao Yang, 2022. "Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Haohao Gu & Kaixin Meng & Ruowei Yuan & Siyang Xiao & Yuying Shan & Rui Zhu & Yajun Deng & Xiaojin Luo & Ruijie Li & Lei Liu & Xu Chen & Yuping Shi & Xiaodong Wang & Chuanhua Duan & Hao Wang, 2024. "Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33766-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.