IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924008511.html
   My bibliography  Save this article

Dynamic behavior and energy flow of floating triboelectric nanogenerators

Author

Listed:
  • Xu, Shuxing
  • Zhang, Jiabin
  • Su, Erming
  • Li, Chengyu
  • Tang, Wei
  • Liu, Guanlin
  • Cao, Leo N.Y.
  • Wang, Zhong Lin

Abstract

The comprehension of the dynamic behavior and energy flow characteristics of triboelectric nanogenerators on water is a prerequisite for enhancing wave energy conversion efficiency and output performance, yet these data have always been lacking, impeding their progress in harnessing blue energy. Herein, a series of meticulously conducted experiments aim to unveil the interaction between water waves and the geometrical structures of floating triboelectric nanogenerators (F-TENGs). The six degrees of freedom (6DoF) information of various F-TENGs under wave excitation is received for the first time by employing the new high-tech Infrared Optical Capture System and precision numeric analysis. Based on statistical data from 118 research papers, the most universally applicable modes/parameters are systematically explored, as well as the non-rigid body models. The six-dimensional kinematic radar matrices and energy gradient curves, peeled from the calculation and statistics of the 6DoF data, have comprehensively illuminated the dynamic behavior and energy flow of F-TENGs while interacting with water waves. These results can serve as an enlightening framework for structural design and facilitate the optimization of F-TENG in harnessing blue energy.

Suggested Citation

  • Xu, Shuxing & Zhang, Jiabin & Su, Erming & Li, Chengyu & Tang, Wei & Liu, Guanlin & Cao, Leo N.Y. & Wang, Zhong Lin, 2024. "Dynamic behavior and energy flow of floating triboelectric nanogenerators," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008511
    DOI: 10.1016/j.apenergy.2024.123468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924008511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wanghuai Xu & Huanxi Zheng & Yuan Liu & Xiaofeng Zhou & Chao Zhang & Yuxin Song & Xu Deng & Michael Leung & Zhengbao Yang & Ronald X. Xu & Zhong Lin Wang & Xiao Cheng Zeng & Zuankai Wang, 2020. "A droplet-based electricity generator with high instantaneous power density," Nature, Nature, vol. 578(7795), pages 392-396, February.
    2. Zhong Lin Wang, 2017. "Catch wave power in floating nets," Nature, Nature, vol. 542(7640), pages 159-160, February.
    3. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    4. Zijie Xu & Leo N. Y. Cao & Chengyu Li & Yingjin Luo & Erming Su & Weizhe Wang & Wei Tang & Zhaohui Yao & Zhong Lin Wang, 2023. "Digital mapping of surface turbulence status and aerodynamic stall on wings of a flying aircraft," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Qian Zhang & Qijie Liang & Dilip Krishna Nandakumar & Hao Qu & Qiongfeng Shi & Fuad Indra Alzakia & Darrell Jun Jie Tay & Lin Yang & Xueping Zhang & Lakshmi Suresh & Chengkuo Lee & Andrew Thye Shen We, 2021. "Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Chengyu Li & Di Liu & Chaoqun Xu & Ziming Wang & Sheng Shu & Zhuoran Sun & Wei Tang & Zhong Lin Wang, 2021. "Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Hongfa Zhao & Minyi Xu & Mingrui Shu & Jie An & Wenbo Ding & Xiangyu Liu & Siyuan Wang & Cong Zhao & Hongyong Yu & Hao Wang & Chuan Wang & Xianping Fu & Xinxiang Pan & Guangming Xie & Zhong Lin Wang, 2022. "Underwater wireless communication via TENG-generated Maxwell’s displacement current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Huamei Wang & Liang Xu & Yu Bai & Zhong Lin Wang, 2020. "Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    2. Ze-Qi Lu & Long Zhao & Hai-Ling Fu & Eric Yeatman & Hu Ding & Li-Qun Chen, 2024. "Ocean wave energy harvesting with high energy density and self-powered monitoring system," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Donghoon Lee & You-Yeob Song & Angyin Wu & Jia Li & Jeonghun Yun & Dong-Hwa Seo & Seok Woo Lee, 2024. "Electrochemical kinetic energy harvesting mediated by ion solvation switching in two-immiscible liquid electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    6. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    7. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    8. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    9. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    10. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    12. Zhao, Kun & Song, Zhenhua & Sun, Wanru & Gao, Wei & Guo, Junhong & Zhang, Kewei, 2024. "Flexible neodymium iron boron/polyvinyl chloride (Nd2Fe14B/PVC) composite film based hybrid nanogenerator for efficient mechanical energy harvesting," Energy, Elsevier, vol. 300(C).
    13. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.
    14. Luo, Rongrong & Wang, Liuwei & Yu, Wei & Shao, Feilong & Shen, Haikuo & Xie, Huaqing, 2023. "High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion," Applied Energy, Elsevier, vol. 331(C).
    15. Ewa C. E. Rönnebro & Greg Whyatt & Michael Powell & Matthew Westman & Feng (Richard) Zheng & Zhigang Zak Fang, 2015. "Metal Hydrides for High-Temperature Power Generation," Energies, MDPI, vol. 8(8), pages 1-25, August.
    16. Qian Li & Ting Tan & Benlong Wang & Zhimiao Yan, 2024. "Avian-inspired embodied perception in biohybrid flapping-wing robotics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    18. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    19. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    20. Wang, Jiayu, 2016. "Do light vehicle emissions standards promote environmental goals in Australia?," Conference papers 332692, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.