IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1120-d502702.html
   My bibliography  Save this article

A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting

Author

Listed:
  • Dae Sol Kong

    (Department of Physics, Inha University, Incheon 22212, Korea)

  • Jae Yeon Han

    (Department of Physics, Inha University, Incheon 22212, Korea)

  • Young Joon Ko

    (Department of Physics, Inha University, Incheon 22212, Korea)

  • Sang Hyeok Park

    (Department of Physics, Inha University, Incheon 22212, Korea)

  • Minbaek Lee

    (Department of Physics, Inha University, Incheon 22212, Korea)

  • Jong Hoon Jung

    (Department of Physics, Inha University, Incheon 22212, Korea)

Abstract

While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm 2 ) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability.

Suggested Citation

  • Dae Sol Kong & Jae Yeon Han & Young Joon Ko & Sang Hyeok Park & Minbaek Lee & Jong Hoon Jung, 2021. "A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting," Energies, MDPI, vol. 14(4), pages 1-10, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1120-:d:502702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Chen & Yi Huang & Nannan Zhang & Haiyang Zou & Ruiyuan Liu & Changyuan Tao & Xing Fan & Zhong Lin Wang, 2016. "Micro-cable structured textile for simultaneously harvesting solar and mechanical energy," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    2. Li Cheng & Qi Xu & Youbin Zheng & Xiaofeng Jia & Yong Qin, 2018. "A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Li & He Huang & Chuan Wu, 2023. "A Method of Vibration Measurement with the Triboelectric Sensor during Geo-Energy Drilling," Energies, MDPI, vol. 16(2), pages 1-10, January.
    2. Yupeng Mao & Yongsheng Zhu & Tianming Zhao & Changjun Jia & Xiao Wang & Qi Wang, 2021. "Portable Mobile Gait Monitor System Based on Triboelectric Nanogenerator for Monitoring Gait and Powering Electronics," Energies, MDPI, vol. 14(16), pages 1-12, August.
    3. Qi, Youchao & Kuang, Yang & Liu, Yaoyao & Liu, Guoxu & Zeng, Jianhua & Zhao, Junqing & Wang, Lu & Zhu, Meiling & Zhang, Chi, 2022. "Kirigami-inspired triboelectric nanogenerator as ultra-wide-band vibrational energy harvester and self-powered acceleration sensor," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).
    2. Caixia Li & Yongsheng Zhu & Fengxin Sun & Changjun Jia & Tianming Zhao & Yupeng Mao & Haidong Yang, 2022. "Research Progress on Triboelectric Nanogenerator for Sports Applications," Energies, MDPI, vol. 15(16), pages 1-15, August.
    3. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    4. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & He, Benlin & Tang, Qunwei, 2018. "Harvest rain energy by polyaniline-graphene composite films," Renewable Energy, Elsevier, vol. 125(C), pages 995-1002.
    5. Tan, Qinxue & Fan, Kangqi & Tao, Kai & Zhao, Liya & Cai, Meiling, 2020. "A two-degree-of-freedom string-driven rotor for efficient energy harvesting from ultra-low frequency excitations," Energy, Elsevier, vol. 196(C).
    6. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    9. Ze-Qi Lu & Long Zhao & Hai-Ling Fu & Eric Yeatman & Hu Ding & Li-Qun Chen, 2024. "Ocean wave energy harvesting with high energy density and self-powered monitoring system," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Yupeng Mao & Yongsheng Zhu & Tianming Zhao & Changjun Jia & Xiao Wang & Qi Wang, 2021. "Portable Mobile Gait Monitor System Based on Triboelectric Nanogenerator for Monitoring Gait and Powering Electronics," Energies, MDPI, vol. 14(16), pages 1-12, August.
    11. Mahmoud Wagih & Abiodun Komolafe & Bahareh Zaghari, 2020. "Separation-Independent Wearable 6.78 MHz Near-Field Radiative Wireless Power Transfer using Electrically Small Embroidered Textile Coils," Energies, MDPI, vol. 13(3), pages 1-14, January.
    12. Zhai, Cong & Chou, Xiujian & He, Jian & Song, Linlin & Zhang, Zengxing & Wen, Tao & Tian, Zhumei & Chen, Xi & Zhang, Wendong & Niu, Zhichuan & Xue, Chenyang, 2018. "An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators," Applied Energy, Elsevier, vol. 231(C), pages 1346-1353.
    13. Zhu, Wei & Tu, Yubin & Deng, Yuan, 2018. "Multi-parameter optimization design of thermoelectric harvester based on phase change material for space generation," Applied Energy, Elsevier, vol. 228(C), pages 873-880.
    14. Jiaqi Li & Jie Chen & Hengyu Guo, 2021. "Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives," Energies, MDPI, vol. 14(21), pages 1-18, October.
    15. Fan, Kangqi & Chen, Chenggen & Zhang, Baosen & Li, Xiang & Wang, Zhen & Cheng, Tinghai & Lin Wang, Zhong, 2022. "Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy," Applied Energy, Elsevier, vol. 328(C).
    16. Hyung Woo Choi & Dong-Wook Shin & Jiajie Yang & Sanghyo Lee & Cátia Figueiredo & Stefano Sinopoli & Kay Ullrich & Petar Jovančić & Alessio Marrani & Roberto Momentè & João Gomes & Rita Branquinho & Um, 2022. "Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Rahate Ahmed & Yeongmin Kim & Zeeshan & Wongee Chun, 2019. "Development of a Tree-Shaped Hybrid Nanogenerator Using Flexible Sheets of Photovoltaic and Piezoelectric Films," Energies, MDPI, vol. 12(2), pages 1-10, January.
    18. Xun Zhao & Yihao Zhou & Jing Xu & Guorui Chen & Yunsheng Fang & Trinny Tat & Xiao Xiao & Yang Song & Song Li & Jun Chen, 2021. "Soft fibers with magnetoelasticity for wearable electronics," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    19. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Hongzhen Liu & Xianglin Ji & Zihao Guo & Xi Wei & Jinchen Fan & Peng Shi & Xiong Pu & Feng Gong & Lizhi Xu, 2024. "A high-current hydrogel generator with engineered mechanoionic asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1120-:d:502702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.