IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9376.html
   My bibliography  Save this article

Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators

Author

Listed:
  • Yunlong Zi

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Simiao Niu

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Jie Wang

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Zhen Wen

    (School of Materials Science and Engineering, Georgia Institute of Technology)

  • Wei Tang

    (Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences)

  • Zhong Lin Wang

    (School of Materials Science and Engineering, Georgia Institute of Technology
    Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences)

Abstract

Triboelectric nanogenerators have been invented as a highly efficient, cost-effective and easy scalable energy-harvesting technology for converting ambient mechanical energy into electricity. Four basic working modes have been demonstrated, each of which has different designs to accommodate the corresponding mechanical triggering conditions. A common standard is thus required to quantify the performance of the triboelectric nanogenerators so that their outputs can be compared and evaluated. Here we report figure-of-merits for defining the performance of a triboelectric nanogenerator, which is composed of a structural figure-of-merit related to the structure and a material figure of merit that is the square of the surface charge density. The structural figure-of-merit is derived and simulated to compare the triboelectric nanogenerators with different configurations. A standard method is introduced to quantify the material figure-of-merit for a general surface. This study is likely to establish the standards for developing TENGs towards practical applications and industrialization.

Suggested Citation

  • Yunlong Zi & Simiao Niu & Jie Wang & Zhen Wen & Wei Tang & Zhong Lin Wang, 2015. "Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9376
    DOI: 10.1038/ncomms9376
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9376
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Han & Liu, Guoxu & Bu, Tianzhao & Wang, Zheng & Cao, Jie & Wang, Zhaozheng & Zhang, Zhi & Dong, Sicheng & Zeng, Jianhua & Cao, Xiaoxin & Zhang, Chi, 2024. "Autonomous cantilever buck switch for ultra-efficient power management of triboelectric nanogenerator," Applied Energy, Elsevier, vol. 357(C).
    2. Jiaqi Li & Jie Chen & Hengyu Guo, 2021. "Triboelectric Nanogenerators for Harvesting Wind Energy: Recent Advances and Future Perspectives," Energies, MDPI, vol. 14(21), pages 1-18, October.
    3. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    4. Li, Yanhong & Guo, Ziting & Zhao, Zhihao & Gao, Yikui & Yang, Peiyuan & Qiao, Wenyan & Zhou, Linglin & Wang, Jie & Wang, Zhong Lin, 2023. "Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting," Applied Energy, Elsevier, vol. 336(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.