IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipbs0306261922016002.html
   My bibliography  Save this article

A novel forecast scenario-based robust energy management method for integrated rural energy systems with greenhouses

Author

Listed:
  • Tan, Hong
  • Li, Zhenxing
  • Wang, Qiujie
  • Mohamed, Mohamed A.

Abstract

Traditional energy supplies in rural areas are mainly rural power grids and fossil energy, which makes energy use inefficient and is not environmentally unfriendly. With the development of agricultural intelligence and the increasing seriousness of environmental problems, rural areas urgently need to make full use of the rich local renewable resources such as biogas and wind power. Meanwhile, it is also necessary to jointly optimize the supply of electricity and heat energy to improve energy utilization efficiency and reduce emissions. In this paper, a cooperative operation framework of the integrated rural energy system with greenhouses (IRES-GH) is introduced and a novel forecast scenario-based robust energy management method is presented to hedge the uncertainty of electric load and wind power output. Based on the forecast bounds of uncertain variables, a two-stage robust optimization (TSRO) model of the IRES-GH is first built. Using the TSRO model, the operation status of the units and energy storage elements in the worst-case scenario can be got. Then, the deterministic dispatch model is constructed based on the obtained operation status of devices and the day-ahead hourly point forecast scenario of uncertain variables to enhance the economy of the dispatch results. Since the second stage of the TSRO model includes binary variables, the nested column and constraint generation (NC&CG) algorithm is used to solve it. The effectiveness of the model and solution method is verified by two cases with different scales.

Suggested Citation

  • Tan, Hong & Li, Zhenxing & Wang, Qiujie & Mohamed, Mohamed A., 2023. "A novel forecast scenario-based robust energy management method for integrated rural energy systems with greenhouses," Applied Energy, Elsevier, vol. 330(PB).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922016002
    DOI: 10.1016/j.apenergy.2022.120343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922016002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "Distributionally robust operation for integrated rural energy systems with broiler houses," Energy, Elsevier, vol. 254(PC).
    2. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    3. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    4. Mohamed, Mohamed A. & Tajik, Elham & Awwad, Emad Mahrous & El-Sherbeeny, Ahmed M. & Elmeligy, Mohammed A. & Ali, Ziad M., 2020. "A two-stage stochastic framework for effective management of multiple energy carriers," Energy, Elsevier, vol. 197(C).
    5. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response," Energy, Elsevier, vol. 239(PA).
    8. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "An effective stochastic framework for smart coordinated operation of wind park and energy storage unit," Applied Energy, Elsevier, vol. 272(C).
    9. Xuan, Ang & Shen, Xinwei & Guo, Qinglai & Sun, Hongbin, 2021. "A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables," Applied Energy, Elsevier, vol. 294(C).
    10. Tan, Jin & Wu, Qiuwei & Zhang, Menglin & Wei, Wei & Liu, Feng & Pan, Bo, 2021. "Chance-constrained energy and multi-type reserves scheduling exploiting flexibility from combined power and heat units and heat pumps," Energy, Elsevier, vol. 233(C).
    11. Catherine Mitchell, 2016. "Momentum is increasing towards a flexible electricity system based on renewables," Nature Energy, Nature, vol. 1(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Hong & Wang, Yuwei & Wang, Qiujie & Lin, Zhenjia & Mohamed, Mohamed A., 2024. "Day-ahead dispatch of electricity-hydrogen systems under solid-state transportation mode of hydrogen energy via FV-IGDT approach," Energy, Elsevier, vol. 300(C).
    2. Zhang, Y.Q. & Chen, J.J. & Wang, Y.X. & Feng, L., 2024. "Enhancing resilience of agricultural microgrid through electricity–heat–water based multi-energy hub considering irradiation intensity uncertainty," Renewable Energy, Elsevier, vol. 220(C).
    3. Joanna Janczura & Andrzej Puć, 2023. "ARX-GARCH Probabilistic Price Forecasts for Diversification of Trade in Electricity Markets—Variance Stabilizing Transformation and Financial Risk-Minimizing Portfolio Allocation," Energies, MDPI, vol. 16(2), pages 1-28, January.
    4. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    5. Han, Fengwu & Zhao, Yunlong & Zeng, Jianfeng & Zhang, Shengnan & Wu, Tianyu, 2024. "Uncertain parameters adjustable two-stage robust optimization of a rural housing integrated energy system considering biomass on-site utilization," Energy, Elsevier, vol. 296(C).
    6. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "Distributionally robust operation for integrated rural energy systems with broiler houses," Energy, Elsevier, vol. 254(PC).
    2. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "Multi-agent energy management of smart islands using primal-dual method of multipliers," Energy, Elsevier, vol. 208(C).
    3. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response," Energy, Elsevier, vol. 239(PA).
    4. Wu, Xuewei & Zhang, Bin & Nielsen, Mads Pagh & Chen, Zhe, 2024. "Multi-stage planning of integrated electricity-gas-heating system in the context of carbon emission reduction," Applied Energy, Elsevier, vol. 358(C).
    5. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Zhou, Bo & Guan, Qinyue & Tan, Jin & Lin, Zhongwei & Fang, Fang, 2022. "Day-ahead stochastic scheduling of integrated electricity and heat system considering reserve provision by large-scale heat pumps," Applied Energy, Elsevier, vol. 307(C).
    6. Tan, Hong & Wang, Yuwei & Wang, Qiujie & Lin, Zhenjia & Mohamed, Mohamed A., 2024. "Day-ahead dispatch of electricity-hydrogen systems under solid-state transportation mode of hydrogen energy via FV-IGDT approach," Energy, Elsevier, vol. 300(C).
    7. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    8. Liu, Xinrui & Hou, Min & Sun, Siluo & Wang, Jiawei & Sun, Qiuye & Dong, Chaoyu, 2022. "Multi-time scale optimal scheduling of integrated electricity and district heating systems considering thermal comfort of users: An enhanced-interval optimization method," Energy, Elsevier, vol. 254(PB).
    9. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    10. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    11. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    12. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    13. Chen, Lei & Jiang, Yuqi & Zheng, Shencong & Deng, Xinyi & Chen, Hongkun & Islam, Md. Rabiul, 2023. "A two-layer optimal configuration approach of energy storage systems for resilience enhancement of active distribution networks," Applied Energy, Elsevier, vol. 350(C).
    14. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    15. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    16. Karoliina Isoaho & Jochen Markard, 2020. "The Politics of Technology Decline: Discursive Struggles over Coal Phase‐Out in the UK," Review of Policy Research, Policy Studies Organization, vol. 37(3), pages 342-368, May.
    17. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.
    18. Ying Chen & Krystel K. Castillo-Villar & Bing Dong, 2021. "Stochastic control of a micro-grid using battery energy storage in solar-powered buildings," Annals of Operations Research, Springer, vol. 303(1), pages 197-216, August.
    19. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    20. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922016002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.