IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics0360544220302772.html
   My bibliography  Save this article

A two-stage stochastic framework for effective management of multiple energy carriers

Author

Listed:
  • Mohamed, Mohamed A.
  • Tajik, Elham
  • Awwad, Emad Mahrous
  • El-Sherbeeny, Ahmed M.
  • Elmeligy, Mohammed A.
  • Ali, Ziad M.

Abstract

This paper suggests optimal scheduling of Energy Hub (EH) considering water to maximize its profit in a pool-based day-ahead electricity market where the EH including electrical-thermal-water demands. The proposed model is expressed as a bi-level problem and allows the EH acts as an independent price maker considering uncertain parameters. The market settlement mechanism is based on the pay-at-MCP where every market participant is paid at the Market Clearing Price (MCP). Maximizing the profit of the recommended strategic producer and minimizing dispatch cost within the power grid are represented as the upper level and lower level of the bi-level stochastic optimization problem, respectively. The problem is formulated with Mathematical Program with Equilibrium Constraints (MPEC) and is converted into a new Mixed-Integer Linear Program (MILP) based on Karush-Kuhn-Tucker (KKT) conditions. To model the high uncertainties associated with water, heat and electricity demand within the EH as well as the uncertainties in the generators and loads submitted a price to the market, a stochastic framework based on Point Estimate Method (PEM) is developed. Due to the complex and nonlinear nature of the proposed problem, a new optimization algorithm based on a modified Bat Algorithm (BA) is applied to solve the problem optimally. To confirm the strong performance of the proposed strategic EH producer in the electricity market as well as its effect on the buses’ Locational Marginal Prices (LMPs) in a transmission-constrained market, authors applied the presented approach on the 24-bus IEEE system. So overall, the presence of line congestions may increase the opportunity of the proposed producers to make a profit. Depending on the lines’ connection points, the effects of the congestion lines on profit varies in lines. The effective performance of the proposed model is demonstrated in the results.

Suggested Citation

  • Mohamed, Mohamed A. & Tajik, Elham & Awwad, Emad Mahrous & El-Sherbeeny, Ahmed M. & Elmeligy, Mohammed A. & Ali, Ziad M., 2020. "A two-stage stochastic framework for effective management of multiple energy carriers," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302772
    DOI: 10.1016/j.energy.2020.117170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220302772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    2. Antonio Pepiciello & Alfredo Vaccaro & Mario Mañana, 2019. "Robust Optimization of Energy Hubs Operation Based on Extended Affine Arithmetic," Energies, MDPI, vol. 12(12), pages 1-15, June.
    3. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    4. Rakipour, Davood & Barati, Hassan, 2019. "Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response," Energy, Elsevier, vol. 173(C), pages 384-399.
    5. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    6. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "Multi-agent energy management of smart islands using primal-dual method of multipliers," Energy, Elsevier, vol. 208(C).
    3. Tan, Hong & Yan, Wei & Ren, Zhouyang & Wang, Qiujie & Mohamed, Mohamed A., 2022. "A robust dispatch model for integrated electricity and heat networks considering price-based integrated demand response," Energy, Elsevier, vol. 239(PA).
    4. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "An effective stochastic framework for smart coordinated operation of wind park and energy storage unit," Applied Energy, Elsevier, vol. 272(C).
    5. Bao, Shiyuan & Yang, Zhifang & Yu, Juan, 2021. "Decomposition and analysis of marginal prices in multi-energy systems," Energy, Elsevier, vol. 221(C).
    6. Wang, Xiaolin & Lu, Xiangyi & Chen, Jun & Hu, Xiangping, 2024. "The border effects and choices of competitive strategies of the provincial natural gas markets in China," Resources Policy, Elsevier, vol. 89(C).
    7. Tan, Hong & Li, Zhenxing & Wang, Qiujie & Mohamed, Mohamed A., 2023. "A novel forecast scenario-based robust energy management method for integrated rural energy systems with greenhouses," Applied Energy, Elsevier, vol. 330(PB).
    8. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    9. Yan Xiong & Jiakun Fang, 2022. "Co-Operative Optimization Framework for Energy Management Considering CVaR Assessment and Game Theory," Energies, MDPI, vol. 15(24), pages 1-17, December.
    10. Martinho, V.J.P.D., 2020. "Relationships between agricultural energy and farming indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafavi Sani, Mostafa & Mostafavi Sani, Hossein & Fowler, Michael & Elkamel, Ali & Noorpoor, Alireza & Ghasemi, Amir, 2022. "Optimal energy hub development to supply heating, cooling, electricity and freshwater for a coastal urban area taking into account economic and environmental factors," Energy, Elsevier, vol. 238(PB).
    2. Mostafavi Sani, Mostafa & Noorpoor, Alireza & Shafie-Pour Motlagh, Majid, 2019. "Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory," Energy, Elsevier, vol. 177(C), pages 574-592.
    3. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    5. Heidari, A. & Mortazavi, S.S. & Bansal, R.C., 2020. "Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies," Applied Energy, Elsevier, vol. 261(C).
    6. Zou, Juan & Yang, Xu & Liu, Zhongbing & Liu, Jiangyang & Zhang, Ling & Zheng, Jinhua, 2021. "Multiobjective bilevel optimization algorithm based on preference selection to solve energy hub system planning problems," Energy, Elsevier, vol. 232(C).
    7. Roustaei, M. & Niknam, T. & Salari, S. & Chabok, H. & Sheikh, M. & Kavousi-Fard, A. & Aghaei, J., 2020. "A scenario-based approach for the design of Smart Energy and Water Hub," Energy, Elsevier, vol. 195(C).
    8. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    9. Hassan Ranjbarzadeh & Seyed Masoud Moghaddas Tafreshi & Mohd Hasan Ali & Abbas Z. Kouzani & Suiyang Khoo, 2022. "A Probabilistic Model for Minimization of Solar Energy Operation Costs as Well as CO 2 Emissions in a Multi-Carrier Microgrid (MCMG)," Energies, MDPI, vol. 15(9), pages 1-24, April.
    10. Joseph Uchenna Ezekwugo & Anthony Ibe & Alwell Nteegah, 2022. "Optimization of Integrated Energy Systems in a Developing Economy using Technology," American Journal of Economics and Business Administration, Science Publications, vol. 14(1), pages 1-11, March.
    11. Ghaith, Ahmad F. & Epplin, Francis M. & Frazier, R. Scott, 2017. "Economics of grid-tied household solar panel systems versus grid-only electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 407-424.
    12. Zehua Wang & Fachao Liang & Sheng-Hau Lin, 2023. "Can socially sustainable development be achieved through homestead withdrawal? A hybrid multiple-attributes decision analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-18, December.
    13. Yu Huang & Weiting Zhang & Kai Yang & Weizhen Hou & Yiran Huang, 2019. "An Optimal Scheduling Method for Multi-Energy Hub Systems Using Game Theory," Energies, MDPI, vol. 12(12), pages 1-20, June.
    14. Kim, SangYoun & Heo, SungKu & Nam, KiJeon & Woo, TaeYong & Yoo, ChangKyoo, 2023. "Flexible renewable energy planning based on multi-step forecasting of interregional electricity supply and demand: Graph-enhanced AI approach," Energy, Elsevier, vol. 282(C).
    15. Mestre, Guillermo & Sánchez-Úbeda, Eugenio F. & Muñoz San Roque, Antonio & Alonso, Estrella, 2022. "The arithmetic of stepwise offer curves," Energy, Elsevier, vol. 239(PE).
    16. Magda I. El-Afifi & Magdi M. Saadawi & Abdelfattah A. Eladl, 2022. "Cogeneration Systems Performance Analysis as a Sustainable Clean Energy and Water Source Based on Energy Hubs Using the Archimedes Optimization Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    17. Changhong Deng & Ning Liang & Jin Tan & Gongchen Wang, 2016. "Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network," Sustainability, MDPI, vol. 8(12), pages 1-15, November.
    18. Colmenar-Santos, Antonio & Linares-Mena, Ana-Rosa & Borge-Diez, David & Quinto-Alemany, Carlos-Domingo, 2017. "Impact assessment of electric vehicles on islands grids: A case study for Tenerife (Spain)," Energy, Elsevier, vol. 120(C), pages 385-396.
    19. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Yang, Shanlin, 2020. "A robust optimization approach for coordinated operation of multiple energy hubs," Energy, Elsevier, vol. 197(C).
    20. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.