IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p807-d1031193.html
   My bibliography  Save this article

ARX-GARCH Probabilistic Price Forecasts for Diversification of Trade in Electricity Markets—Variance Stabilizing Transformation and Financial Risk-Minimizing Portfolio Allocation

Author

Listed:
  • Joanna Janczura

    (Hugo Steinhaus Center, Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

  • Andrzej Puć

    (Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland)

Abstract

In this paper, we propose dynamic, short-term, financial risk management strategies for small electricity producers and buyers that trade in the wholesale electricity markets. Since electricity is mostly nonstorable, financial risk coming from extremely volatile electricity prices cannot be reduced by using standard finance-based approaches. Instead, a short-term operational planing and a proper trade diversification might be used. In this paper, we analyze the price risk in terms of the Markowitz mean–variance portfolio theory. Hence, it is crucial to forecast properly the variance of electricity prices. To this end, we jointly model day-ahead and intraday or balancing prices from Germany and Poland using ARX-GARCH type models. We show that using heteroscedastic volatility significantly improves probabilistic price forecasts according to the pinball score, especially if variance stabilizing transformation is applied prior to a model estimation. The price forecasts are then used for construction of dynamic diversification strategies that are based on volatility-type risk measures. We consider different objectives as well as a buyer’s and a seller’s perspective. The proposed strategies are applied for the diversification of trade among different markets in Germany and Poland. We show that the objective of the strategy can be achieved using the proposed approach, but the risk minimization is usually related to lower profits. We find that risk minimization is especially important for a seller in both markets, while for a buyer a profit maximization objective leads to a more optimal risk–return trade-off.

Suggested Citation

  • Joanna Janczura & Andrzej Puć, 2023. "ARX-GARCH Probabilistic Price Forecasts for Diversification of Trade in Electricity Markets—Variance Stabilizing Transformation and Financial Risk-Minimizing Portfolio Allocation," Energies, MDPI, vol. 16(2), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:807-:d:1031193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/807/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/807/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    2. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.
    3. Angelica Gianfreda, Lucia Parisio and Matteo Pelagatti, 2016. "The Impact of RES in the Italian DayAhead and Balancing Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    4. Lumsdaine, Robin L. & Ng, Serena, 1999. "Testing for ARCH in the presence of a possibly misspecified conditional mean," Journal of Econometrics, Elsevier, vol. 93(2), pages 257-279, December.
    5. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
    6. Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafal Weron, 2021. "Erratum to 'Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark' [Appl. Energy 293 (2021) 116983]," WORking papers in Management Science (WORMS) WORMS/21/12, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Edwin J. Elton & Martin J. Gruber, 1997. "Modern Portfolio Theory, 1950 to Date," New York University, Leonard N. Stern School Finance Department Working Paper Seires 97-3, New York University, Leonard N. Stern School of Business-.
    10. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    11. Narajewski, Michał & Ziel, Florian, 2020. "Econometric modelling and forecasting of intraday electricity prices," Journal of Commodity Markets, Elsevier, vol. 19(C).
    12. Hickey, Emily & Loomis, David G. & Mohammadi, Hassan, 2012. "Forecasting hourly electricity prices using ARMAX–GARCH models: An application to MISO hubs," Energy Economics, Elsevier, vol. 34(1), pages 307-315.
    13. Katrzyna Maciejowska, 2022. "Portfolio management of a small RES utility with a structural vector autoregressive model of electricity markets in Germany," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(4), pages 75-90.
    14. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    15. Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
    16. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    17. Elton, Edwin J. & Gruber, Martin J., 1997. "Modern portfolio theory, 1950 to date," Journal of Banking & Finance, Elsevier, vol. 21(11-12), pages 1743-1759, December.
    18. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    19. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    20. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    21. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    22. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    23. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    24. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    25. Maciejowska, Katarzyna, 2020. "Assessing the impact of renewable energy sources on the electricity price level and variability – A quantile regression approach," Energy Economics, Elsevier, vol. 85(C).
    26. Tan, Hong & Li, Zhenxing & Wang, Qiujie & Mohamed, Mohamed A., 2023. "A novel forecast scenario-based robust energy management method for integrated rural energy systems with greenhouses," Applied Energy, Elsevier, vol. 330(PB).
    27. Katarzyna Maciejowska & Weronika Nitka & Tomasz Weron, 2019. "Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits," Energies, MDPI, vol. 12(4), pages 1-15, February.
    28. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    29. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    30. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    31. Luo, Shuman & Weng, Yang, 2019. "A two-stage supervised learning approach for electricity price forecasting by leveraging different data sources," Applied Energy, Elsevier, vol. 242(C), pages 1497-1512.
    32. Sergei Kulakov and Florian Ziel, 2021. "The Impact of Renewable Energy Forecasts on Intraday Electricity Prices," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    33. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weronika Nitka & Rafał Weron, 2023. "Combining predictive distributions of electricity prices. Does minimizing the CRPS lead to optimal decisions in day-ahead bidding?," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 105-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
    2. Janczura, Joanna & Wójcik, Edyta, 2022. "Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. The German and the Polish market case study," Energy Economics, Elsevier, vol. 110(C).
    3. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    6. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    7. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    8. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    9. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    10. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2020. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 466-479.
    11. Michał Narajewski, 2022. "Probabilistic Forecasting of German Electricity Imbalance Prices," Energies, MDPI, vol. 15(14), pages 1-17, July.
    12. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    13. Micha{l} Narajewski, 2022. "Probabilistic forecasting of German electricity imbalance prices," Papers 2205.11439, arXiv.org.
    14. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    15. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    16. Li, Wei & Paraschiv, Florentina, 2022. "Modelling the evolution of wind and solar power infeed forecasts," Journal of Commodity Markets, Elsevier, vol. 25(C).
    17. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    18. Christopher Kath & Weronika Nitka & Tomasz Serafin & Tomasz Weron & Przemysław Zaleski & Rafał Weron, 2020. "Balancing Generation from Renewable Energy Sources: Profitability of an Energy Trader," Energies, MDPI, vol. 13(1), pages 1-15, January.
    19. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    20. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:807-:d:1031193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.